
Document version: 1.0-1
Status: final
Date: 2020-12-18
Document id: 481ccb62

TeSSLa Language Specification
Version 1.0

Contents

1 Introduction 1
1.1 Copyright Notice . 1
1.2 Document and Language Versioning . 2
1.3 Structure of the Specification . 2
1.4 List of Contributors . 4
1.5 Resources . 4
1.6 Notation . 4

2 Lexical syntax 5
2.1 Unicode . 5
2.2 Notation . 5
2.3 Lexical Structure . 6

2.3.1 Comments . 6
2.3.2 Identifiers . 6

2.4 Keywords . 7
2.5 Literals . 7

2.5.1 Integer Literals . 7
2.5.2 Float Literals . 8
2.5.3 String literals . 8

2.6 Operators . 9
2.7 Time Unit . 9
2.8 End of Statement . 9
2.9 Spaces . 9
2.10 Newlines . 10

3 TeSSLa Core 11
3.1 Specification Structure . 11
3.2 Values . 12
3.3 Types . 13
3.4 Type Equality . 14
3.5 Expressions . 15

3.5.1 Constants . 16
3.5.2 Identifiers . 16
3.5.3 Extern References . 16
3.5.4 Function Definitions . 17
3.5.5 Call Expression . 17

iii

Contents

3.5.6 Record Definitions . 18
3.5.7 Record Access . 18
3.5.8 Tuple Definitions . 18
3.5.9 Type Application . 19

3.6 Annotation Usage . 19
3.7 Input Streams . 20
3.8 Output Streams . 20
3.9 Definitions . 20

4 TeSSLa 21
4.1 Specification Structure . 21
4.2 Types . 22
4.3 Annotation Definitions . 22
4.4 Annotation Usage . 23
4.5 Input Streams . 23
4.6 Output Streams . 23
4.7 Modules . 24
4.8 Imports . 25
4.9 Function Definition . 25
4.10 Extern Definitions . 26
4.11 Variable Definition . 27
4.12 Type Definition . 27
4.13 Expressions . 28

4.13.1 Literals . 28
4.13.2 Time Units . 28
4.13.3 String Interpolation . 29
4.13.4 Operators . 32
4.13.5 Variable/Parameter Access . 34
4.13.6 Grouping . 35
4.13.7 Block Expressions . 35
4.13.8 Call Expressions . 36
4.13.9 Record and Tuple Creation . 37
4.13.10 Member Access . 37
4.13.11 Lambda Expression . 38

4.14 Macro Expansion and Constant Evaluation 38
4.15 Type Inference and Type Checking . 39

4.15.1 Expression types . 39
4.15.2 Implicit Conversion . 40

5 Mandatory Operations and Constants on Values 42
5.1 Bool . 42

5.1.1 If-Then-Else . 42
5.1.2 Not . 43
5.1.3 And . 43

iv

Contents

5.1.4 Or . 43
5.2 Comparison . 44
5.3 Integer . 44

5.3.1 Integer Addition and Subtraction 44
5.3.2 Additive Inverse . 44
5.3.3 Integer Multiplication . 45
5.3.4 Integer Division . 45
5.3.5 Bitwise Operations . 45
5.3.6 Bit Flip . 46
5.3.7 Bit Shifts . 46
5.3.8 Integer Comparison . 46

5.4 Float . 47
5.4.1 Float Addition . 47
5.4.2 Additive Inverse . 47
5.4.3 Float Multiplication . 47
5.4.4 Float Division . 48
5.4.5 Float Comparison . 48

5.5 String . 48
5.5.1 Conversion into String . 48
5.5.2 String Concatenation . 49
5.5.3 String Formatting . 49

5.6 Option . 49
5.6.1 None . 49
5.6.2 Some . 49
5.6.3 isNone . 50
5.6.4 isSome . 50
5.6.5 getSome . 50

6 Mandatory Operations for Streams 51
6.1 Nil . 52
6.2 Unit . 52
6.3 Default . 52
6.4 Time . 53
6.5 Lift . 53
6.6 Last . 54
6.7 Delay . 55
6.8 Merge . 56
6.9 Signal lift . 57

v

1 Introduction

The TeSSLa language is a stream-based specification language suitable for defining the
expected behaviour of a cyber-physical system. Its main features are that

• it supports the notion of different streams defining behaviour of parts of the
underlying system by formulating functions from time points to values,

• each event comes with a timestamp from a single global clock and
• it is not bound to a fixed rate for sampling events but supports different rates,

turning TeSSLa into an asynchronous specification language suitable for describing
signal behaviour in arbitrary precision.

This document is the TeSSLa language specification. Its aim is to define the TeSSLa
language in a precise way, both in terms of syntax and semantics. This document is not
meant as a tutorial for neither the TeSSLa language nor for supporting tools, but it may
be used to verify TeSSLa tools w.r.t. language conformance.

1.1 Copyright Notice

You are free to

• copy and redistribute this document in any medium or format.
• use the example snippets of TeSSLa code included in this document for any purpose,

even commercially.
• remix, transform, and build upon this document for any purpose, even commercially,

as long as you do not call the derived material TeSSLa language specification.
• use the language TeSSLa as defined in this document for any purpose, even

commercially.
• build compilers, interpreters and corresponding tools for TeSSLa for any purpose,

even commercially. This includes releasing your tools under any license of your
choice. Your implementations may only be called TeSSLa tools if they implement
the TeSSLa language as defined in this document (including previous versions and
later updates of this document).

1

1 Introduction

1.2 Document and Language Versioning

To refer to the right version of the TeSSLa languages, we use versioning schemas both
for the TeSSLa language itself as well as for this specification document.

The TeSSLa language uses versioning with two numbers major.minor, for example 1.3.

Incrementing these versions identifies the amount of change. Major version increment
identifies a fundamental change in the language. This includes backwards incompatible
changes, i.e. changes that render previously valid specifications invalid.

Minor version increment identifies new extensions to the language that do not impact
compatibility, although previously unspecified behaviour may still be specified and
additional diagnostics may warn against potential errors in previously warning-free
programs.

The document version identifies the version of this document and consists of the language
version, a status and a single number that is incremented with each draft or updated
document, for example 1.3-draft-5.

The status distinguishes between draft, review and final. If the status is final, status is
skipped in the document version.

For example a document version of 1.3-draft-5 is the fifth draft for the language specifi-
cation version 1.3.

The title page also contains a document id which changes whenever the content of the
document changes, by creating a hash of the source files.

1.3 Structure of the Specification

This specification defines two languages: The TeSSLa language and the TeSSLa Core
language, referenced as TeSSLa Core or Core.

While the TeSSLa language is intended to be a high-level specification language, the
TeSSLa Core language is the common intermediate language used by different TeSSLa
interpreters and engines. TeSSLa Core itself is not a subset of TeSSLa but a simple stand-
alone language, although it has a high number of similarities with the TeSSLa language.
A TeSSLa specification can be translated into a semantically equivalent specification in
TeSSLa Core. This document covers how this translation is performed and defines the
semantics of TeSSLa Core. The semantics of TeSSLa is then given by its translation into
TeSSLa Core. Any translation of TeSSLa preserving this semantics, even without explicit
translation to TeSSLa Core, is considered TeSSLa Language Specification conformant.

TeSSLa Core can be seen as more high-level than a typical intermediate language of
programming languages, because it is still defined in terms of streams and not in terms

2

1 Introduction

of processor operations. Intuitively a specification in TeSSLa Core is a graph of basic
stream transforming operations, which still allows to perform very powerful optimizations
targeted for specific interpreters or engines, e.g. those utilizing FPGAs or other specialized
hardware designed for stream processing. Hence a TeSSLa specification can first be
compiled to TeSSLa Core by a backend-independent compiler and afterwards be further
translated or interpreted by different backends.

A basic concept behind TeSSLa is that so called extern references to constants, types
and functions may be used, whose behaviour/translation has to be built into the specific
compiler backend or defined in another language. This makes them the basic building
blocks of the TeSSLa language: All basic functions and stream operations have to be
defined by externs. This enables the execution of the same specification on highly diverse
platforms from a PC to an FPGA.

The common lexical syntax of TeSSLa and TeSSLa Core is given in chapter 2. It defines
how the byte stream is translated into a token stream. Subsequent chapters define the
syntax using these token sequences.

The syntax and semantics of TeSSLa Core are given in chapter 3. This chapter defines the
type system, how input and output streams are declared and how internal streams and
value expressions are bind to names. Further the definition and application of functions
is described.

Then chapter 4 covers the syntax and semantics of the TeSSLa language:

The top level structure of a TeSSLa specification is defined in section 4.1. This includes
definitions for modules, streams, functions, types and annotations, which are described
in the following sections.

In section 4.13 expressions on streams and values are defined. Also the constant evaluation
and macro expansion which is crucial during compilation is described there.

TeSSLa is a statically typed language with parametric polymorphism and type inference.
The type system of TeSSLa is equal to the one in TeSSLa Core, though in TeSSLa Core
all types have to be given explicitly. The type inference rules needed for compilation are
defined in section 4.15.

A definition of the mandatory operations for stream processing can be found in chapter 6.
Likewise there are some basic functions, types and constants which have to be supported
by every backend. These mandatory elements and their semantics are listed in chapter 5.

A TeSSLa specification may also refer to libraries, where some common functions are
pre-defined. There is an official standard library and extension libraries available on
https://www.tessla.io/.

A full documentation of the official libraries is not part of this document but can be
found on https://www.tessla.io/.

3

https://www.tessla.io/
https://www.tessla.io/

1 Introduction

1.4 List of Contributors

• Gunnar Bergmann
• Thiemo Bucciarelli
• Lukas Convent
• Normann Decker
• Sebastian Hungerecker
• Hannes Kallwies
• Martin Leucker
• César Sánchez
• Torben Scheffel
• Malte Schmitz
• Volker Stolz
• Daniel Thoma

1.5 Resources

Additional resources about TeSSLa can be found on the web site https://www.tessla.io/.
This includes

• an implementation of a TeSSLa compiler (including compilation to TeSSLa Core),
• an introduction to TeSSLa,
• an online implementation,
• additional tools for TeSSLa,
• news and additional information, as well as
• the documentation of the official libraries.

1.6 Notation

Specification code is written in typewriter font 40+2 or

def x: Int = 40 + 2

Syntactical definitions are also written in typewriter font.

Placeholders for token sequences or values are typeset in a cursive, mathematical notation:
𝑒1.

4

https://www.tessla.io/

2 Lexical syntax

This chapter defines the lexical syntax of the TeSSLa and TeSSLa Core languages. The
lexical syntax is a regular language which defines the syntax rules for transforming a
stream of bytes into tokens.

The following chapters define the higher-level syntax of TeSSLa Core and TeSSLa on
a stream of tokens, where the tokens may be interspersed with whitespace characters
(ASCII code point 32 and code point 9), but not by line breaks.

2.1 Unicode

Specifications are written with the Unicode Basic Multilingual Plane (BMP) character
set encoded as UTF-8.

Since language version 1.0, TeSSLa uses Unicode standard 11.0.

2.2 Notation

This specification uses an EBNF-like notation for defining the syntax of the TeSSLa
language.

Each rule is in the form

NonTerm ::= 𝑝𝑎𝑡𝑡𝑒𝑟𝑛

where 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 defines a pattern, which the nonterminal NonTerm can expand to.

Lexical tokens are typed in upper case letters.

The following table sums up the production rules used in this document:

𝑝𝑎𝑡? Optional
(𝑝𝑎𝑡) Grouping
-𝑝𝑎𝑡 All words not matching 𝑝𝑎𝑡
𝑝𝑎𝑡+ One or more repetitions of 𝑝𝑎𝑡
𝑝𝑎𝑡* Zero or more repetitions of 𝑝𝑎𝑡

𝑝𝑎𝑡* is equivalent to 𝑝𝑎𝑡+?
𝑝𝑎𝑡,+ One or more repetitions of 𝑝𝑎𝑡, separated by comma

5

2 Lexical syntax

𝑝𝑎𝑡,+ is equivalent to 𝑝𝑎𝑡 (‘,’ 𝑝𝑎𝑡)*
𝑝𝑎𝑡,* Zero or more repetitions of 𝑝𝑎𝑡, separated by comma

𝑝𝑎𝑡,* is equivalent to (𝑝𝑎𝑡),+?
𝑝𝑎𝑡1 | 𝑝𝑎𝑡2 Alternatives
‘𝑡𝑒𝑟𝑚’ Terminal – Sequence of characters
[𝑏𝑒𝑔𝑖𝑛-𝑒𝑛𝑑] Matches one character between code points 𝑏𝑒𝑔𝑖𝑛 and 𝑒𝑛𝑑
𝑝𝑎𝑡1 / 𝑝𝑎𝑡2 Difference. All words that match 𝑝𝑎𝑡1, but do not match 𝑝𝑎𝑡2
newline newline char (ASCII code 10, escape sequence \n)

It may be optionally preceded by ASCII code 13 (\r).
eof End of file
any Any character

All patterns use the largest matching rule: At each point the longest possible substring
matching a production rule is chosen.

2.3 Lexical Structure

2.3.1 Comments

COMMENT ::= ‘#’ (-newline)* (newline | eof)

Comments start with the character ‘#’ and extend to the first end of line.

2.3.2 Identifiers

LETTER ::= [a-z] | [A-Z] | ‘_’ | ‘$’
DECIMAL_DIGIT ::= [0-9]
LETTER_OR_DIGIT ::= LETTER | DECIMAL_DIGIT
IDENTIFIER_SEQ ::= LETTER LETTER_OR_DIGIT*

ID ::= IDENTIFIER_SEQ / KEYWORD
LOCAL_ANNOTATION ::= ‘@’ ID
GLOBAL_ANNOTATION ::= ‘@@’ ID

Identifiers are sequences of alphabetic ASCII characters, the underscore ‘_’, the Dollar
sign ‘$’ and the decimal digits, which additionally

• do not start with a digit and
• are not a keyword.

6

2 Lexical syntax

Note that the dollar sign may only be used for identifiers in TeSSLa Core.

Upper and lower case is significant.

For example tessla and TeSSLa are distinct identifiers.

x1 and _1 are valid identifiers, but 1x, 1_ or 1 are not.

2.4 Keywords

KEYWORD ::= ‘in’ | ‘out’ | ‘def’
| ‘type’ | ‘extern’ | ‘lazy’
| ‘strict’ | ‘if’ | ‘then’
| ‘else’ | ‘liftable’ | ‘import’
| ‘include’

Keywords appear similar to identifiers, but they are reserved for specific use cases.

2.5 Literals

PRIM_LITERAL ::= INT | FLOAT

Literals are the source code representation of a value of a built-in type.

Note that Boolean literals are defined as mandatory externs (see chapter 5)

2.5.1 Integer Literals

INT ::= DECIMAL_DIGIT+ | ‘0x’ HEX_DIGIT+
HEX_DIGIT ::= [0-9] | [a-f] | [A-F]

An integer literal is a sequence of digits with an optional prefix.

A decimal integer literal contains only digits between 0 and 9.

A hexadecimal integer literal contains digits between 0 and 9 and between a and f or A
and F.

7

2 Lexical syntax

2.5.2 Float Literals

FLOAT ::= DECIMAL_DIGIT+ ‘.’ DECIMAL_DIGIT+
| DECIMAL_DIGIT+ (‘.’ DECIMAL_DIGIT+)?

‘e’ ('+'|'-') DECIMAL_DIGIT+

There are two notations for float literals. The first one is a sequence of digits with a dot.
The second one uses an additional exponent, separated with an ‘e’ character.

2.5.3 String literals

STRING_LITERAL ::= STRING_OPEN STRING_CLOSE

STRING_OPEN ::= ‘"’ STRING_ELEMENT*
STRING_CONTINUE ::= STRING_ELEMENT*
STRING_CLOSE ::= ‘"’

STRING_ELEMENT ::= CHAR_ESCAPE_SEQ
| (any - (‘\’ | ‘$’ | ‘"’))

STRING_ELEMENT_FMT ::= STRING_ELEMENT - ‘%’
| ‘%%’ | ’%n’

STRING_OPEN_FMT ::= ‘f"’ STRING_ELEMENT_FMT*
STRING_CONTINUE_FMT ::= STRING_ELEMENT_FMT*
STRING_CLOSE_FMT ::= ‘"’

CHAR_ESCAPE_SEQ ::= ‘\n’ | ‘\r’ | ‘\t’ | ‘\$’ | ‘\\’ | ‘\"’

STRING_ELMENT is the basic building block for strings. A string element is either a plain
character or an escaped sequence, determined by CHAR_ESCAPE_SEQ. The characters \,
$ and " can only occur as part of an escape sequence.

The STRING_LITERAL rule encodes string literals only. Unlike Core the TeSSLa language
supports string interpolation and string formatting syntax which are more general than
string literals.

The string formatting syntax is not part of the lexical grammar, because it allows the
inclusion of expression into strings, which are no longer regular. Instead it is defined in
section 4.13.3. Therefore only building-blocks are defined in this chapter.

STRING_OPEN begins a string, STRING_CLOSE terminates it and STRING_CONTINUE defines
a sequence between interspersed formatting elements.

For the formatting syntax similar constructs are defined. STRING_OPEN_FMT,
STRING_CONTINUE_FMT and STRING_CLOSE_FMT define a formatted string. The rule

8

2 Lexical syntax

STRING_ELEMENT_FMT defines an element for the formatting syntax. It excludes the %
character except for the sequences %% and %n.

2.6 Operators

INFIX_OPERATOR ::= ‘<<’ | ‘>>’ | ‘>=’ | ‘<=’ | ‘<’ | ‘>’
| ‘>=.’ | ‘<=.’ | ‘>.’ | ‘<.’ |‘!=’ | ‘==’
| ‘&’ | ‘|’ | ‘^’ | ‘+’ | ‘-’ | ‘*’
| ‘/’ | ‘%’ | ‘+.’ | ‘-.’ | ‘*.’ | ‘/.’
| ‘&&’ | ‘||’

UNARY_OPERATOR ::= ‘~’ | ‘-’ | ‘-.’ | ‘!’

The given sequences of characters form operators. Operators are split into infix and
unary operators.

2.7 Time Unit

TIME_UNIT ::= ‘fs’ | ‘ps’ | ‘ns’ | ‘µs’ | ‘us’ | ‘ms’
| ‘s’ | ‘min’ | ‘h’ | ‘d’

A time unit can be used to define time spans.

2.8 End of Statement

EOS ::= ‘;’ | newline | eof

A statement ends either at an semicolon, at a new line indicated by the \n (ASCII value
0x0A), or at the end of a file.

2.9 Spaces

In a TeSSLa specification an arbitrary number of spaces can be inserted between tokens.

9

2 Lexical syntax

2.10 Newlines

In some places EOS tokens are necessary, in other places newlines can be used for
improving readability.

Any newline that is preceded by a backslash is ignored and does not constitute an EOS
token.

Additional newlines can be used in the following positions without creating an EOS
token:

• Directly after a prefix operator
• Directly after an infix operator
• Directly after an opening brace, bracket or parenthesis
• Directly before an closing brace, bracket or parenthesis
• Directly after a comma
• Directly after the keywords in, out, def, liftable, type, module, as
• Directly after the : of a type annotation
• Directly after the . of a member access
• Directly before/after the keywords then, else
• Directly after the => of a lambda expression or function type
• Directly after the = of a definition or a member definition
• Directly after an annotation
• As part of an empty line that only consists of whitespaces

10

3 TeSSLa Core

The TeSSLa Core language is intended to be the common intermediate language used by
different TeSSLa interpreters and engines. A TeSSLa compiler translates a specification
given in TeSSLa into a semantically equivalent specification in TeSSLa Core.

TeSSLa Core primarily differs from TeSSLa in that

• no functions over streams exist,
• all types are explicit,
• expressions are not nested, i.e. arguments in expressions are exclusively variables

or constants, and
• all definitions contain unique identifiers (this includes parameter identifiers but not

type parameters).

This chapter defines the syntax and semantics of the Core language itself. Semantics
of event streams and operations on events or values are defined later in chapter 5 and
chapter 6.

Syntactical production rules that are specific to the Core language are prefixed with a
lowercase c, as in cSpecification instead of Specification.

3.1 Specification Structure

cSpecification ::= (cStatement EOS)*
cStatement ::= cOutputStream | cInputStream

| cDefinition | cExternDef
| cGlobalAnnotation

A specification consists of a sequence of statements.

Each statement is either a definition, an extern definition, an input stream or an output
stream declaration.

Definitions bind expressions (over constants, variables or input streams) to names. Stream
definitions can be marked as output streams and printed subsequently by the backend if
the input events they depend on are available.

UID ::= ID

11

3 TeSSLa Core

UID is a unique identifier, that can only be defined once in the specification.

In the following there will be a definition of the basic concepts values, types, expressions
and annotations and afterwards a detailed introduction to the statements named above.

3.2 Values

Backends for TeSSLa Core internally have to support the following types in order to
evaluate a specification:

• Booleans, Integers, Floats, Strings
• Streams of values
• function representations
• record and tuple data structures

Details on the characteristics of these types can be found further below.

Information on streams can be found in chapter 6 where also the stream operations are
defined.

During expression evaluation errors may occur. There are the following distinct error
kinds in TeSSLa:

Static error are errors that are raised during specification translation. A message with
details is included in the implementations output.

Panic immediately aborts evaluation and writes a message to the output.
Error value ♢ is an error raised by evaluation of a value expression.
Error event † is an error raised by evaluation of a stream expression. For details see

chapter 6.

Error values and error events are similar to exceptions in other languages. They propagate
the error and may contain additional information, but may be handled silently. In this
case ♢ and † are treated as usual values by the backend. There are no mandatory
operators in TeSSLa to retrieve detailed information from an error value but can be
supported as extern operators by some backends.

For the backend it is possible to support further value types (e.g. sets, lists…). They are
called extern types.

12

3 TeSSLa Core

3.3 Types

cTypeArgumentList ::= ‘[’ cType,* ‘]’
cTypeParamList ::= ‘[’ ID,* ‘]’
cType ::= UID cTypeArgumentList?

| cFunctionType
| cRecordType
| cTupleType

cFunctionType ::= cTypeParamList ‘(’ ((‘strict’ | ‘lazy’)? cType),*
‘)’ ‘=>’ cType

cRecordType ::= ‘{’ (ID ‘:’ cType),* ‘}’
cTupleType ::= ‘()‘ | ‘(‘ cType ‘,‘ cType,+ ‘)‘

Types are either identifiers of extern types, followed by their type arguments, function
types, record types or tuple types.

Extern types are such types which are natively supported by the backend. Mandatory
extern types are Bool, Int, Float, String, Option[T] and Events[T] for streams (see
chapter 5 and chapter 6), but backends may also support futher extern types which can
then be used in the specification. Extern types are solely identified by their name. While
in the TeSSLa language extern types have to be explicitly defined, in Core they can be
used without a further definition.

Function types consist of a list of type arguments (unique identifiers given in square
brackets), parameter types with an evaluation strategy (strict or lazy) and a return
type. Unlike in TeSSLa, arguments must have an explicit evaluation strategy in TeSSLa
Core.

Records are data structures which contain named fields of arbitrary type. Record types
consist of a list of identifiers (field names) and their types. The field names have to be
distinct.

Tuples are data structures which contain unnamed (positional) fields of arbitrary type.
Tuple types consist of the fields’ types in their positional order.

In TeSSLa and TeSSLa Core tuples are equal to records with field names _1, _2, …

There are no tuples with one element. Tuples with no elements are used as unit values.

We call types, which are not based on a stream type in the following value types.

A TeSSLa Core specification must be sound according to the type checking rules defined
in section 4.15. The types of certain expressions are also defined there.

13

3 TeSSLa Core

3.4 Type Equality

Two types are distinct, unless one of the following rules applies

Extern Types

Two extern types 𝐴[𝑇1, … , 𝑇𝑛] and 𝐵[𝑇 ′
1, … , 𝑇 ′

𝑛] are equal if

• the names are equal and
• the type arguments are equal

Function Types

If the number of type arguments or the number of arguments is different, then the types
are distinct.

Otherwise type 𝐴 has the form

[𝑇𝐴,1, ..., 𝑇𝐴,𝑛](𝑃𝐴,1, … , 𝑃𝐴,𝑚) => 𝑅𝐴

and type 𝐵 has the form

[𝑇𝐵,1, ..., 𝑇𝐵,𝑛](𝑃𝐵,1, … , 𝑃𝐵,𝑚) => 𝑅𝐵.

Let type 𝐵′ be 𝐵 with renamed type variables

𝐵′ = 𝐵[𝑇𝐵,1/𝑇𝐴,1][𝑇𝐵,2/𝑇𝐴,2]...[𝑇𝐵,𝑚/𝑇𝐴,𝑚].

𝐴 and 𝐵 are equal if for every 1 ≤ 𝑖 ≤ 𝑚 𝑃𝐴,𝑖 and 𝑃𝐵′,𝑖 are equal and if 𝑅𝐴 and 𝑅𝐵′ are
equal.

𝑃𝐴,𝑖 and 𝑃𝐵′,𝑖 are equal if their type and their evaluation strategy (strict or lazy) are
equal.

However a TeSSLa Core specification is still type correct if two function types which
have to be equal differ exclusively in their evaluation strategy. In this case the backend
has to perform a conversion.

14

3 TeSSLa Core

Record Types

Two record types are equal if all their fields match.

More precisely, two record types 𝐴 and 𝐵 are equal if

• for every field in 𝐴 there is a field in 𝐵 with same name and same type

and

• for every field in 𝐵 there is a field in 𝐴 with same name and same type.

Tuple Types

Tuple types are equal to the record type with the same field types and names _1, _2… in
the tuple’s order.

3.5 Expressions

cConstant ::= PRIM_LITERAL | STRING_LITERAL | ‘true’
| ‘false’ | ‘()’

cExpressionArg ::= cConstant | UID | cExpArgTypeApp

cExpression ::= cExternRef | cConstant | cFunctionDef
| cRecordDef | cFunctionCall | cRecordAccess
| cTupleDef | cExpTypeApp

Expressions are either

• references to externs, whose behavior is resolved by the implementation,
• constants,
• function, record or tuple definitions
• function calls and record accesses, or
• type applications of them.

ExpressionArgs can be used as arguments in other expressions. These can be constants,
identifiers or type applications of them.

The value to which certain expressions evaluate are given in the following.

15

3 TeSSLa Core

3.5.1 Constants

Constants are integer or (basic) string literals or the externs true and false and the unit
value.

Evaluation

The value of a constant is the common interpretation of its textual representation. The
unit value is equal to the value of the empty tuple expression.

3.5.2 Identifiers

Valid identifiers are either defined in the current specification or parameters.

Evaluation

If an identifier is defined in the current specification, an expression is tied to this identifier.
The value of this expression is the value of the identifier.

If an identifier is a parameter, the value is dependent on the specific application of the
function. See the corresponding sections of this chapter for details on how the exact
value can be obtained in this case.

3.5.3 Extern References

cExternRef ::= extern(STRING_LITERAL)

The reference to an extern value is represented by the keyword extern, followed by the
name of the extern in brackets as string literal.

Extern references are the basic building blocks of a TeSSLa specification. They provide
values and functions which are implemented or translated in a backend-specific way.

Externs are necessary to define the mandatory functions, which have to be supported by
every implementation, listed in chapter 6 and chapter 5.

Evaluation

The value of the extern reference is determined by the implementation dependent on
the name. This value can either be built into the implementation or dynamically loaded
during runtime, e.g. from a library.

16

3 TeSSLa Core

3.5.4 Function Definitions

cFunctionDef ::= cTypeParamList? cFunctionParams ‘=>’ cFunctionBody
cFunctionParams ::= ‘(’ (UID ‘:’ (‘strict’ | ‘lazy’) cType),* ‘)’
cFunctionBody ::= ‘{’ (cDefinition EOS)* cExpressionArg ‘}’

A function definition consists of a list of type parameters (unique identifiers), a parameter
list (unique identifiers with name and evaluation strategy, strict or lazy, and a type) and
a body of definitions with a result expression (ExpressionArg) at the end. A skipped
type parameter list equals an empty one.

Evaluation

The value of such a definition is a function representation. This function representation
maps a list of values for strict parameters and expressions for lazy parameters to the
result value in the following way:

If the argument value of any strict parameter is ♢, the result value is also ♢.

Otherwise the result value is the value of the result expression.

For the evaluation of the result expression it may be necessary to evalute identifiers,
which are defined in the body or are parameter identifiers.

• Parameter identifiers evaluate to the value of the corresponding argument. If the
parameter is lazy, the expression which is passed as argument is therefor evaluated.

• Identifiers defined in the body or in the body of a surrounding function are evaluated
in the same way as identifiers which are defined directly in the specification. However
they may reference parameter and body identifiers themselfs.

3.5.5 Call Expression

cFunctionCall ::= cExpressionArg ‘(’ cExpressionArg,* ‘)’

A call expression is an ExpressionArg, representing the function which is called, followed
by a list of ExpressionArgs for the arguments.

The number of arguments must be equal to the number of parameters of the function
representation the called expression evaluates to.

17

3 TeSSLa Core

Evaluation

The expression in front of the first bracket can be evaluated to a function representation.
For strict parameters of the function representation, the corresponding argument expres-
sions are evaluated and passed as values, for lazy parameters the expressions themselfs
are passed to this function representation.

The value onto which the function representation maps the argument values resp. ex-
pressions is the value of the function application.

3.5.6 Record Definitions

cRecordDef ::= ‘{’ cFieldDef,* ‘}’
cFieldDef ::= ID ‘=’ cExpressionArg

A record definition is a list of identifiers and corresponding expressions (ExpressionArgs)
inside curly brackets.

Evaluation

The value of a record definition is a record data structure. For each identifier it stores the
value of its corresponding expression.

3.5.7 Record Access

cRecordAccess ::= cExpressionArg ‘.’ ID

A record access is an ExpressionArg, representing the record which is accessed, followed
by a dot and the name of the field which is accessed.

Evaluation

The ExpressionArg can be evaluated to a record data structure. The value of the record
access is the value to which this data structure maps the identifier.

3.5.8 Tuple Definitions

cTupleDef ::= ‘()‘
| ‘(‘ cExpressionArg ‘,‘ cExpressionArg,+ ‘)‘

A tuple definition is a list of ExpressionArgs inside parens. Tuples with one element do
not exist, however empty tuples exist and are equal to the unit value.

18

3 TeSSLa Core

Evaluation

The value of a tuple definition is a record data structure. It stores the value of the
subexpressions to the names _1, _2, … in the given order. Therfore the fields of a tuple
can be accessed via record accesses.

3.5.9 Type Application

cExpTypeApp ::= cExpression ‘[’ cType,* ']'
cExpArgTypeApp ::= cExpressionArg ‘[’ cType,* ']'

A type application is a cExpression or cExpressionArg followed by a list of type
arguments. It can be used to explicitly name the types, which are used for the type
parameters of the sub-expression (left to right). The number of type arguments equals
the numer of type parameters of the sub-expression.

Evaluation

A type application has no effect on the evaluation and is just used to give type hints to
the backend. Hence the value of a type application is the value of its sub-expression.

3.6 Annotation Usage

cGlobalAnnotation ::= GLOBAL_ANNOTATION
(‘(’ (cExpression | UID),* ‘)’)

cLocalAnnotation ::= LOCAL_ANNOTATION
(‘(’ (cExpression | UID),* ‘)’)

An annotation is an annotation sequence followed by an argument list. A global annotation
is an identifier preceded by two @ signs, while a local annotation starts with a single @.

Annotations can be used to pass additional information to the backend and connected
tools. The semantics of an annotation is backend/tool specific. For each one there may
be individual annotations.

A global annotation can be used anywhere in the specification and provides information
concerning the whole specification. A local annotation can be used at input and output
stream definitions and contains information related to this stream exclusively.

Annotations may get expressions or identifiers as parameters. These parameters may be
of any value type.

19

3 TeSSLa Core

3.7 Input Streams

cInputStream ::= cLocalAnnotation* ‘in’ UID ‘:’ cType

in 𝑛𝑎𝑚𝑒: Events[T] defines an input stream of the specification, where T is the type
and 𝑛𝑎𝑚𝑒 is the name of the stream.

𝑛𝑎𝑚𝑒 is part of the public interface of the specification. It is the name that is used for
mapping input data to their respective streams.

Only valid instances of the given datatype T are allowed as input. This excludes ♢ and
†.

The type used in the in statement must be Events[T] where T is a type not based on a
stream or function type.

3.8 Output Streams

cOutputStream ::= cLocalAnnotation* ‘out’ ID

out 𝑠 defines an existent stream as output stream.

Given the events from the input streams, TeSSLa stream 𝑠 is evaluated step-by-step and
the events from 𝑠 are written to an output trace.

An annotation @name(𝑛𝑎𝑚𝑒) where 𝑛𝑎𝑚𝑒 is a string, is used to associate the output
stream with a name.

out panics when a received event is either † or if its value contains ♢.

𝑠 has to be of type Events[T] with T a type not based on a stream or function type.

3.9 Definitions

cDefinition ::= ‘def’ UID ‘:’ cType ‘=’ cExpression

def 𝑖𝑑: 𝑇 = 𝑒 binds an expression to name 𝑖𝑑. This name must be unique. No other
definition or parameter must contain such a name. The type of 𝑒 must be 𝑇.

Cyclic definitions of type Events[𝑇] for some 𝑇 are not allowed. We call a definition
cyclic if it binds an expression to a name such that the expression depends on that
particular name. The first argument of the built-in event operators last (see section 6.6)
and delay (see section 6.7) are not considered as dependencies regarding this definition
and are hence the only operators allowing recursive definitions.

The order in which the definitions appear is not of relevance. An identifier can be used
before it is defined.

20

4 TeSSLa

This chapter defines the TeSSLa language and how a TeSSLa specification can be
translated to a semantically equivalent TeSSLa Core specification, which can then be
evaluated according to the rules in chapter 3. By this translation the semantics of TeSSLa
is defined. Note that any compilation perserving this semantics is valid according to this
language specification, i.e. the translation into TeSSLa Core is not mandatory.

4.1 Specification Structure

Specification ::= (Include EOS)* (Statement EOS)*
Include ::= 'include' STRING_LITERAL
Statement ::= ModuleDef | VariableDef | TypeDef

| FunctionDef | AnnotationDef | ExternDef
| OutputStream | InputStream | Import
| GlobalAnnotation

A specification is a sequence of statements, where a statement is either a definition of a
module, variable, type, function, annotation or extern. It can also define an input stream,
mark a stream as an output or import definitions from a module’s namespace. Before
any statement, a sequence of includes can be specified, which define additional TeSSLa
source files to be included.

Translation into Core

At first, all included files are resolved and their contents appended to the specification.
Therefore the string after the include keyword has to match a file path relative to the
location of the translated TeSSLa file. Includes with absolute pathes are not supported.
Implementations are also allowed to include some TeSSLa files (e.g. a standard library)
implicitly without an explicit include statement in the specification.

The resulting TeSSLa specification is then flattened. The tree of expressions is traversed
and every nested expression 𝑒, except for literals, is replaced with a new statement

def 𝑛𝑎𝑚𝑒: 𝑡 = 𝑒

where 𝑛𝑎𝑚𝑒 is a fresh, unique identifier and 𝑡 is the type of 𝑒.

21

4 TeSSLa

Afterwards every statement in the specification is iteratively translated according to the
following rules until it is directly contained in the Core language.

4.2 Types

Type ::= cType
TypeArgumentList ::= ‘[’ Type,* ‘]’
TypeParamList ::= cTypeParamList

Types in TeSSLa are identical to types in TeSSLa Core. However, the following restrictions
apply:

• Type parameters are not allowed to be stream types, e.g. Foo[Events[Int]](...).
• Function types are not allowed to be parameterized when used as return type

or parameter type, e.g. T => T is a valid function type, but not allowed as
return type or parameter type.

Information which types certain expressions have, when a TeSSLa specification is type
correct and how types can be inferred can be found in section section 4.15.

4.3 Annotation Definitions

AnnotationDef ::= ‘def’ (GLOBAL_ANNOTATION | LOCAL_ANNOTATION)
cFunctionParams?

Annotation definitions provide a signature for an annotation. Global annotations (starting
with @@) and local ones (starting with @) are defined in the same way. Annotation
parameters may not be of stream-based type (e.g. Events[...]).

Translation into Core

Annotation definitions are solely used for type-checking their usages in section 4.15. As
such, they are not needed in Core and therefore discarded during the translation.

22

4 TeSSLa

4.4 Annotation Usage

LocalAnnotation ::= cLocalAnnotation
GlobalAnnotation ::= cGlobalAnnotation

Annotation usages syntactically and semantically don’t differ between TeSSLa and TeSSLa
Core.

Global annotations can be used anywhere in the specification, local annotations only at
in- and output streams.

Translation into Core

Annotation usages exists in Core and can directly be translated.

4.5 Input Streams

InputStream ::= cInputStream

Input definitions are fully equal to Core. The name of an input stream has to be unique
in the outermost scope.

Translation into Core

Input streams can be directly translated into Core.

4.6 Output Streams

OutputStream ::= LocalAnnotation* ‘out’ Expression (‘as’ ID)?
| ‘out’ ‘*’

Marks a stream as an output, with an optional identifier as name for this output stream.
Though output stream definitions already exist in Core, TeSSLa enables an advanced
syntax for it.

As in Core the expression after out has to be of type Events[T] for a type T not based on
a stream or function type. However other constant expressions at this place are implicitly
converted to streams (see section 4.15.2).

With out * every defined and input stream is made an output.

23

4 TeSSLa

Translation into Core

An output stream of the form out 𝑒 as 𝑠 is translated as:

def 𝑠′: 𝑡 := 𝑒
@name("𝑠")
out 𝑠′

where 𝑡 is the inferred type of expression 𝑒.

If the identifier is omitted, the output stream is annotated with @name("𝑛𝑎𝑚𝑒") instead,
where 𝑛𝑎𝑚𝑒 is a string representation of expression 𝑒.

out * is replaced by out s for every defined identifier s with output-able type (Events[T]
with T not based on a stream or function type) including input streams.

4.7 Modules

ModuleDef ::= ‘module’ ID ‘{’ (ModuleStatement EOS)* ‘}’
ModuleStatement ::= ModuleDef | VariableDef | FunctionDef

| ExternDef

A module creates a namespace, which avoids name collision.

It may contain submodules, variable, function and extern definitions, but no input or
output stream definitions.

Translation into Core

In Core modules are represented as records. This means that a module

module 𝑚𝑜𝑑 {
def 𝑥1 = 𝑒1
…
def 𝑥𝑛 = 𝑒𝑛

}

is equivalent to a record

def 𝑚𝑜𝑑 = {
𝑥1 = 𝑒1,
…,
𝑥𝑛 = 𝑒𝑛

}

and is then translated as such.

24

4 TeSSLa

4.8 Imports

Import ::= ‘import’ (ID ‘.’)* ID

Imports allow to import the definitions of a module into the current scope, such that its
definitions can be used without using a member access.

Translation into Core

Imports are resolved by replacing each usage of an identifier of the imported module
with its respective member access.

As an example, given a module A which contains a definition foo,

import A
out foo

will be translated to

out A.foo

If the current scope contains a definition with the same name, that definition has priority
over the imported one. Import of two modules containing a definition with the same
name is not allowed.

4.9 Function Definition

FunctionDef ::= ‘liftable’? FunctionSignature ‘=’ Expression
FunctionDefWhere?

FunctionSignature ::= ‘def’ ID TypeParamList? ParamList? (‘:’ Type)?

ParamList ::= ‘(‘ (ID ‘:‘ (‘strict‘ | ‘lazy‘)? Type),* ‘)’
FunctionDefWhere ::= ‘where’ ‘{’

(VariableDef | FunctionDef | ExternDef)+ ‘}’

A function definition consists of a signature with an identifier, type parameters and
parameters, and a result expression followed by an optional where block.

If the type parameter list is not empty, the parameter list can be skipped. It equals an
empty parameter list then.

Constant definitions with type arguments can be achieved this way:

def 𝑛𝑎𝑚𝑒[T_1] = …

25

4 TeSSLa

A function definition can be liftable, which allows an implicit conversion from a
function over values to a function over streams. This is explained in more detail in
section 4.13.8.1.

Translation into Core

The generic form of a function definition

def 𝑛𝑎𝑚𝑒[𝑇1, … , 𝑇𝑚](𝑝1 ∶ 𝑚1𝑃1, … , 𝑝𝑛 ∶ 𝑚𝑛𝑃𝑛): 𝑅 = 𝑟𝑒𝑠 where {
𝑑𝑒𝑓1
…
𝑑𝑒𝑓𝑘

}

is translated into a variable definition with a lambda expression and a block expression.

def 𝑛𝑎𝑚𝑒: [𝑇1, … , 𝑇𝑚](𝑚1𝑃1, … , 𝑚𝑛𝑃𝑛) => 𝑅 =
[𝑇1, … , 𝑇𝑚](𝑝1 ∶ 𝑚1𝑃1, … , 𝑝𝑛 ∶ 𝑚𝑛𝑃𝑛) => {

𝑑𝑒𝑓1
…
𝑑𝑒𝑓𝑘
𝑟𝑒𝑠

}

A missing parameter or type parameter list is equivalent to an empty one. The case
where no where block is used is equivalent to an empty where block.

If the evaluation strategy of a parameter (𝑚𝑖) is not explicitly given it is inferred in the
following way:

• If the type is a stream type (Events[T]), it is denoted as lazy
• otherwise as strict.

4.10 Extern Definitions

FullParamList ::= ‘(‘ (ID ‘:‘ (‘strict‘ | ‘lazy‘) Type),* ‘)’
ExternDef ::= ‘liftable’? ‘def’ ID

TypeParamList? FullParamList? ‘:’ Type
‘=’ cExternRef

As well as in Core, TeSSLa specifications may reference functions or constants built into
the backend. An extern definition binds a reference to such an external value or function
to an identifier and provides its signature.

Unlike for function definitions the evaluation strategies of parameters (strict / lazy) must
be given explicitly.

26

4 TeSSLa

Translation into Core

An extern definition

def 𝑛𝑎𝑚𝑒[𝑇1, … , 𝑇𝑚](𝑝1 ∶ 𝑚1𝑃1, … , 𝑝𝑛 ∶ 𝑚𝑛𝑃𝑛): 𝑅 = extern(𝑠)

is translated into a definition

def 𝑛𝑎𝑚𝑒: [𝑇1, … , 𝑇𝑚](𝑚1𝑃1, … , 𝑚𝑛𝑃𝑛) => 𝑅 = extern(𝑠)

which is then in Core.

A skipped type parameter or parameter list equals an empty one.

If the extern definition in TeSSLa contains neither a parameter nor type parameter list,
no translation is performed:

def 𝑛𝑎𝑚𝑒: 𝑇 = extern(𝑠)

is preserved in TeSSLa Core.

4.11 Variable Definition

VariableDef ::= ‘def’ ID (‘:’ Type)? ‘=’ Expression

As in Core a variable definition binds an expression to a name.

Translation into Core

Variable definitions in TeSSLa are equal to those in Core and do not need to be translated.
However the expressions which are assigned to the variable are translated.

4.12 Type Definition

TypeDef ::= ‘type’ ID TypeParamList? ‘=’ (Type | cExternRef)

TypeDef defines an alias for a type or introduces a new extern type. Extern types are
identified by the string which is used in the cExternRef.

Translation into Core

Type definitions are only required for type checking (see section 4.15) and are therefore
discarded during translation.

27

4 TeSSLa

4.13 Expressions

Expression ::= PRIM_LITERAL
| INT TIME_UNIT
| InterpolatedString
| UnaryOperator Expression
| Expression InfixOperator Expression
| IfThenElse
| Variable
| ‘(’ Expression ‘)’
| BlockExpression
| CallExpr
| RecordCreation
| TupleCreation
| MemberAccess
| LambdaExpression

Expressions are also translated into Core and can be evaluated by the rules defined in
chapter 3.

4.13.1 Literals

Literals define basic instances of the mandatory external types Int and Float. They
already exist in Core.

Unlike in Core, Strings are no literals in TeSSLa but handled as InterpolatedString
expressions instead (see section 4.13.3). true, false, and Option values Some and None
are also extern constants and no literals (see section 5.1, section 5.6).

Translation into Core

Literals are preserved during the translation to Core.

4.13.2 Time Units

A numeric literal can be followed by a time unit. These time units refer the to common
units.

fs femtoseconds
ps picoseconds
ns nanoseconds
µs microseconds

28

4 TeSSLa

us microseconds
ms milliseconds
s seconds
min minutes
h hours
d days

Translation into Core

Time units are converted to a numeric literal in respect of a given resolution, called the
base time.

Example: If the base time is 20 ns, then the value 1.2 µs is converted to the literal
60.

The base time is passed to the compiler during translation.

4.13.3 String Interpolation

String ::= InterpolatedString | FormattedString
InterpolatedString ::= STRING_OPEN

(ExprInString STRING_CONTINUE)*
STRING_CLOSE

FormattedString ::= STRING_OPEN_FMT
(ExprInString FormatCmd? STRING_CONTINUE_FMT)*
STRING_CLOSE_FMT

ExprInString ::= ‘$’ ID
| ‘${’ Expression ‘}’

FormatCmd ::= ‘%’ FmtFlags? FmtWidth? (‘.’FmtPrecision)? FmtType

String interpolation allows the inclusion of expressions into a string. These expressions
are evaluated and the result is inserted into the string at the given position. There are
two interpolation operations, one for identifiers $foo where foo is a single identifier and
one for arbitrary expressions ${expr}.

String interpolation does not allow additional spaces between the tokens.

4.13.3.1 Formatted Strings

A formatted string allows customized formatting.

The optional FmtFlags is a set of characters that modifies the output format.

29

4 TeSSLa

The optional FmtWidth is a non-negative decimal integer, that specifies the minimal
number of characters written to the output.

The behaviour of flags and precision depends on the FmtType.

4.13.3.2 Format Type

FmtType ::= ‘x’ | ‘X’ | ‘s’ | ‘S’ | ‘d’ | ‘o’
| ‘e’ | ‘f’ | ‘g’ | ‘G’ | ‘a’ | ‘A’

FmtType allowed types Behaviour

x, X Int Converts an integer to hexadecimal representation
s, S all Converts the type to string using toString
d Int Format the value as a decimal integer
o Int Format the value as an octal integer
e Float Format with scientific notation
f Float Format as decimal number
g, G Float Scientific notation or decimal depending on precision and rounding
a, A Float Hexadecimal floating-point number with significand and exponent

Besides these operators %% and %n can occur everywhere in the string, not just after an
interpolated expression. %% produces a single % and %n produces a platform-specific line
separator.

4.13.3.3 Flags

FmtFlags ::= ‘-’ | ‘#’ | ‘+’ | ‘ ’ | ‘O’ | ‘,’ | ‘(’

Flag Behaviour

- Left justify within the given field of width FmtWidth.
+ Precede the output with a +, unless the value is negative.
␣ If no sign is written, write a space (0x20) instead.
Alternative form:

Precede with 0 for o, 0x for x and 0X for X.
Always include a decimal point for f, g, e, a, A.

0 Left-pad the number with 0 if a padding is specified.
, Use a locale-specific grouping separator.
(Enclose negative numbers with parenthesis.

30

4 TeSSLa

4.13.3.4 Width

FmtWidth ::= INT

Width is the minimum number of characters that is written. If fewer are written, then
the formatted string is padded with either zeros, 0 if the flag 0 is given or with spaces
(0x20) otherwise. The result is right-justified, unless the flag - is given.

4.13.3.5 Precision

FmtPrecision ::= INT

For the floating-point types the precision is the maximum number of characters written
to the output.

Otherwise the precision is the maximum number of written characters. Afterwards the
value is truncated. If precision is less than width, then the result is truncated to a
precision characters.

Precision is not applicable to the d, x and X types.

Translation into Core

Every expression 𝑠 has an equivalent expression 𝑠′ where each $𝑝 is replaced by ${𝑝}.
Additionally, every ${𝑝} without a formatting string can be extended to ${𝑝}%s.

Now 𝑠′ has the form "𝑐𝑜𝑛𝑡𝑒𝑛𝑡0${𝑒𝑥𝑝𝑟1}%𝑓𝑜𝑟𝑚𝑎𝑡1𝑐𝑜𝑛𝑡𝑒𝑛𝑡1...${𝑒𝑥𝑝𝑟𝑛}%𝑓𝑜𝑟𝑚𝑎𝑡𝑛𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑛".

Produce

• def 𝑒𝑖:String = String.format(𝑓𝑜𝑟𝑚𝑎𝑡1, 𝑒𝑥𝑝𝑟𝑛) for all 1 ≤ 𝑖 ≤ 𝑛
• def 𝑠0:String = 𝑐𝑜𝑛𝑡𝑒𝑛𝑡0
• def 𝑠𝑖:String = String.concat(String.concat(𝑠𝑖−1, 𝑒𝑖), 𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑖) for all

1 ≤ 𝑖 ≤ 𝑛

where all 𝑒𝑖 and 𝑠𝑖 are fresh identifiers.

The resulting String 𝑠𝑖 then represents the formatted result of the initial expression 𝑠.

String.concat and String.format are mandatory built-in string operations. For details
see section 5.5.

31

4 TeSSLa

4.13.4 Operators

There are unary and binary infix operators. A unary operator precedes the expression,
e.g. -x, whereas an infix operator is written between two expressions, e.g. y-x.

All operators are semantically equivalent to certain functions, that mandatorily have
to be supported by the implementation. For details on these functions see chapter 5.
The following tables define the name of the functions and the type signatures for each
operator.

4.13.4.1 Infix Operators

Binary operator application of the form 𝑒1 𝑜𝑝 𝑒2 where 𝑜𝑝 is the operation and 𝑒1 and
𝑒2 are expressions is semantically equivalent to an expression 𝑚(𝑒1, 𝑒2) where 𝑚 is a
function from module Operators.

operator symbol
(𝑜𝑝) function name (𝑚) type signature

&& and (Bool, Bool) => Bool
|| or (Bool, Bool) => Bool
== eq [T](T, T) => Bool
!= neq [T](T, T) => Bool
> gt (Int, Int) => Bool
< lt (Int, Int) => Bool
>= geq (Int, Int) => Bool
<= leq (Int, Int) => Bool
>. fgt (Float, Float) => Bool
<. flt (Float, Float) => Bool
>=. fgeq (Float, Float) => Bool
<=. fleq (Float, Float) => Bool
+ add (Int,Int) => Int
- sub (Int,Int) => Int
* mul (Int,Int) => Int
/ div (Int,Int) => Int
% mod (Int,Int) => Int
& bitand (Int,Int) => Int
| bitor (Int,Int) => Int
^ bitxor (Int,Int) => Int
<< leftshift (Int,Int) => Int
>> rightshift (Int,Int) => Int
+. fadd (Float,Float) => Float
-. fsub (Float,Float) => Float
*. fmul (Float,Float) => Float

32

4 TeSSLa

operator symbol
(𝑜𝑝) function name (𝑚) type signature

/. fdiv (Float,Float) => Float

4.13.4.2 Unary Operators

Unary operator application of the form 𝑜𝑝 𝑒 where 𝑜𝑝 is the operation and 𝑒 an expression
is semantically equivalent to an expression 𝑚(𝑒) where 𝑚 is a function from module
Operators.

operator symbol
(𝑜𝑝) function name (𝑚) type signature

! not (Bool) => Bool
- negate (Int) => Int
~ bitflip (Int) => Int
-. fnegate (Float) => Float

4.13.4.3 If then else

IfThenElse ::= ‘if’ Expression ‘then’ Expression ‘else’ Expression

If-then-else is a ternary operation of the form if 𝑒1 then 𝑒2 else 𝑒3 where 𝑒𝑖 are ex-
pressions, and is semantically equivalent to a function application of Operators.ite(𝑒1,
𝑒2, 𝑒3).

4.13.4.4 Precedence and Associativity

The precedence of the infix operators is as follows (lowest to highest):

1. IfThenTlse
2. => (anonymous function)
3. ||
4. &&
5. ==, <, >, <=, >=, !=, >., <., <=., >=.
6. |, ^
7. &
8. <<, >>
9. +, -, +., -.

10. *, /, %, *., /.
11. !, -, ~, -. (unary)
12. () (function call)

33

4 TeSSLa

For example an expression of the form a+b*c parses as a+(b*c).

The operators 2 to 9 (inclusive) are left-associative.

For example a+b+c parses as (a+b)+c.

The unary operators have a higher precedence and are right-associative.

For example --x ≡ -(-x)

The anonymous function creation is right-associative.

For example (x: Int) => (y: Int) => y+x ≡ (x: Int) => ((y: Int) =>
(y+x))

The function call is left-associative.

For example f()() ≡ (f())()

Translation into Core

Through application of the previously defined rules, operators are translated to function
applications, which exist in Core.

4.13.5 Variable/Parameter Access

Variable ::= ID

A variable is a non-qualified identifier within a given scope.

A scope is a region in which a declared item can be accessed by its name.

Within a scope all defined names have to be unique.

Scopes can be nested. Within the inner scope each name refers to the item that was
declared within that scope or is a parameter belonging to this scope. Otherwise it refers
to the item that is referred to by the name in the outer scope.

Scopes are created by

• modules,
• block expressions,
• functions’ where blocks,
• functions (for the parameters) and
• lambda expressions (for the parameters).

34

4 TeSSLa

Translation into Core

Non-qualified identifiers are looked up in their current scope and then replaced with fully
qualified identifiers.

For block expressions this is explained in section 4.13.7.

In functions and lambda expressions the parameters and variables are replaced by unique
identifiers.

For modules, the non-qualified identifier is replaced with the according member access.

4.13.6 Grouping

Expressions can be grouped by wrapping them into parenthesis.

The expression then has the form (𝑒).

Translation into Core

In flat form grouping is implicitly given hence no explicit translation is performed.

4.13.7 Block Expressions

BlockExpression ::= ‘{’ (VariableDef | FunctionDef EOS)*
Expression ‘}’

Variables and functions can be defined within the scope of a block expression and used
to derive a result expression (expression at the end of the block). The block expression
evaluates to the value of that result expression.

Translation into Core

Replace the names of all variables, that are defined within the block with fresh unique
names. Move the definitions from inside the block into the surrounding scope. This is
valid because of the new names; no conflicts occur. Replace the block with the result
expression.

35

4 TeSSLa

4.13.8 Call Expressions

CallExpr ::= Expression TypeArgumentList?
(‘(’ FunctionArgList ‘)’)?

FunctionArgList ::= PositionalArgument,*
| NamedArgument,*
| PositionalArgument,+ ‘,’ NamedArgument,+

NamedArgument ::= ID ‘=’ Expression
PositionalArgument ::= Expression

Call expressions apply a function to a list of arguments. Arguments can be given in
the positional order of the called function’s parameters or in any order identified by the
parameter names. Also a mixture is possible where the first k arguments are given by
position and the rest in arbitrary order by names. A call expression is valid if every
parameter gets exactly one expression assigned.

A missing type argument list equals an empty one.

The argument list can be skipped if the type argument list is not empty (type application).
It equals an empty argument list then.

Translation into Core

The call expression is translated into a call expression by resolving the use of named
arguments and replacing them by according positional arguments.

The called expression is additionally wrapped into a type application if it has type
arguments. If not explicitly provided, the type arguments are inferred from the argument
types.

4.13.8.1 liftable

Functions can automatically be signal-lifted (see section 6.9), if

• the definition is prefixed with the keyword liftable and
• all parameter types and return type are not based on stream or function types.

This means such functions can be applied to value types but also to stream types by
implicitly converting them on their call site if needed:

A call of a function declared as

liftable def 𝑓[𝑇1, ..., 𝑇𝑚](𝑥1: 𝑚1 𝑃1, ... , 𝑥𝑁: 𝑚𝑁 𝑃𝑁): 𝑅 = ...

can implicitly be converted to a call to 𝑓lift defined as

36

4 TeSSLa

def 𝑓lift[𝑇1, ..., 𝑇𝑚](𝑥1: 𝑚1 Events[𝑃1], ... , 𝑥𝑁: 𝑚𝑁 Events[𝑃𝑁]): Events[𝑅]
= slift𝑁(𝑥1, ..., 𝑥𝑁, 𝑓)

if it is called with streams as arguments. slift𝑁 is a function mandatorily provided by
the implementation (see chapter 6).

4.13.9 Record and Tuple Creation

RecordCreation ::= ‘{ (ID ‘=’ Expression),* ‘}’
TupleCreation ::= ‘(’ ’)’ | ‘(’ Expression ‘,’ Expression,+ ‘)’

Records are created with the syntax { 𝑖𝑑1 = 𝑒1, … , 𝑖𝑑𝑛 = 𝑒𝑛}, where 𝑖𝑑1 to 𝑖𝑑𝑛 are
mutually distinct. The result is a record with the members 𝑖𝑑1 to 𝑖𝑑𝑛, where each
member 𝑖𝑑𝑖 evaluates to value of the expression 𝑒𝑖.

Tuples are created with the syntax (𝑒1, 𝑒2, … 𝑒𝑛), and are evaluated to a record with field
names _1, _2, … _n.

Translation into Core

Record and tuple constructors exist in Core (in a flattened version) as well and can be
directly translated.

4.13.10 Member Access

MemberAccess ::= Expression ‘.’ ID | ‘_root_’ ‘.’ ID

In the same way as in Core fields of tuples and records can be accessed by adding
.fieldName to an expression that evaluates to a tuple/record, where fieldName is the
name of the desired field.

The pseudo member access of _root_ allows navigation to the outermost scope. Note:
root is no valid identifier for variables, so no naming conflicts can occur.

Translation into Core

Member accesses exists in Core and can be directly translated.

37

4 TeSSLa

4.13.10.1 _root_ member access

Prefixing a member access with _root_. performs name lookup on the root scope: The
name resolution does not take place in the current scope, instead the access is handled
as if it was performed in the global scope.

For example _root_.last refers to the last function from the global scope.

root member accesses are replaced with accesses to the unique identifiers of the
referenced members.

4.13.11 Lambda Expression

LambdaExpression ::= TypeParamList?
ParamList
(‘:’ Type)? ‘=>’ Expression

A lambda expression defines a function.

It introduces a new scope that contains all parameters and type parameters.

No type parameter list is equivalent to an empty list.

If not explicitly given the evaluation strategies (strict/lazy) are inferred in the same way
as for function definitions (see section 4.9)

Therefore a lambda expression has the most general form

[𝑇1, … , 𝑇𝑚](𝑝1 ∶ 𝑚1𝑃1, … , 𝑝𝑛 ∶ 𝑚𝑛𝑃𝑛):R => 𝑒𝑥𝑝𝑟

Translation into Core

Lambda expressions exist (as Function Definitions) in Core and can be directly translated.
If the expression after the => is a block expression it is not translated but preserved
as block expression. However all statements/expressions in the block expression are
translated according to the usual rules.

4.14 Macro Expansion and Constant Evaluation

During compilation from TeSSLa to TeSSLa Core, constant expressions should be eval-
uated to constants and reified where possible. This includes evaluation of expressions
and also expansion of function and lambda calls. This is done by substituting the call by
its result expression with all parameters replaced. The expression can then be further
evaluated except from the sub-expressions which were passed as lazy parameters.

38

4 TeSSLa

If a function or lambda expression which has type Events[T] for some parameter or as
return type cannot be removed by this expansion (i.e. because of an infinite loop during
partial evaluation) the specification has to be rejected by the compiler. Otherwise a
static graph of stream operators in the resulting Core specification is not guaranteed,
which is problematic for several backends.

4.15 Type Inference and Type Checking

The type inference requires the types of the following identifiers to be statically known:

• Parameters in functions and lambda expressions,
• input streams,
• recursively defined identifiers and
• identifiers defined by externs.

For other identifiers the implementation has to be able to infer the correct type. This is
done in the following way:

At first all type aliases defined by

type 𝑎 = 𝑇

where 𝑇 is a type, are expanded by replacing every occurrence of 𝑎 with 𝑇.

The types of variables with unknown type are then determined step by step until the
types of all variables are fully known. Therefore the types of the expressions which are
bind to these variables are evaluated.

If, at any point, a required type is not equivalent to the inferred type, the type checking
fails.

4.15.1 Expression types

Expressions are first translated into Core according to the rules of this chapter. Afterwards
their type can be determined in the following way:

• An integer literal has type Int.

• A float literal has type Float.

• A string literal has type String.

• An identifier (variable/parameter access) has the type of the variable/parameter.

• A record creation expression {𝑚1 = 𝑥1, … , 𝑚𝑛 = 𝑥𝑛} has the record type
{𝑚1:𝑇1, … , 𝑚𝑛:𝑇𝑛} where 𝑇𝑖 is the type of 𝑥𝑖.

39

4 TeSSLa

• A tuple creation (𝑥1, … , 𝑥𝑛) where 𝑥𝑖 has the type 𝑇𝑖 has the type {_1: 𝑇1, …,
_n: 𝑇𝑛}.

• A member access has the member’s type in the base expresion’s record type.

• A function call 𝑜𝑝(𝑥1, … , 𝑥𝑛) has the function’s return type.

• A type application has the type of its subexpression with the type parameters
resolved from left to right.

• A function declaration of the form [𝑇1, … , 𝑇𝑚](𝑝1: 𝑚1𝑃1, … , 𝑝𝑛: 𝑚𝑛𝑃𝑛): 𝑅 =>
… has the type [𝑇1, … , 𝑇𝑚](𝑚1𝑃1, … , 𝑚𝑛𝑃𝑛) => 𝑅.

If functions have no evaluation strategy 𝑚𝑖 given it is inferred in the following way:

– If the parameter type is a stream type (Events[T]), it is denoted as lazy
– otherwise as strict.

If a function declaration has the expected type except from the evaluation strategies
it is still type correct since implicit conversion is possible in Core.

4.15.2 Implicit Conversion

If required, the type inference also performs implicit conversions. The conversion of
liftable functions is already explained in section 4.13.8.1. More implicit conversions
are described here.

4.15.2.1 Constants

Constants can be automatically converted to streams. Every constant 𝑐 of value type
𝑇 can be lifted to a stream of type Events[𝑇] that has a single event with value 𝑐 at
timestamp 0 and no events otherwise.

A lifted constant 𝑐 is equivalent to an expression 𝑐′ where 𝑐′ is defined by

def 𝑐′: Events[𝑇] = default(𝑐, nil[𝑇])

where default and nil are functions mandatorily provided by the implementation (see
chapter 6).

40

4 TeSSLa

4.15.2.2 Member access

Member access is implicitly convertible to an operation over streams, Member access
𝑠.𝑚 where 𝑚 is the member and 𝑠 has type Events[𝑇] can be automatically converted
to:

slift1(𝑠, (x: 𝑇) => x.𝑚)

where slift1 is a function mandatorily provided by the implementation (see chapter 6).

41

5 Mandatory Operations and Constants on
Values

There is a set of types, operators and constants which must be available in every
implementation.

Depending on the backend they may be partly defined by TeSSLa expressions or by
references to externs, which are implemented in the particular backend. Basic definitions
are contained in the official standard library, which can be included during compilation.
Alternatively the implementations are allowed to include an individual library instead,
where these operations are defined.

Note that operators in TeSSLa are translated to calls of these mandatory functions
described in this chapter (see section 4.13.4), which is why they have to exist.

5.1 Bool

Bool is an extern type. It has only two possible values true and false.

def true: Bool
def false: Bool

true and false are constants of type Bool with the constraint that

true ≢ false

All following functions using Bool must be defined in the module Operators and hence
are accessible by Operators.opName.

5.1.1 If-Then-Else

liftable
def ite[T](condition: strict Bool, ifTrue: lazy T, ifFalse: lazy T): T

ite (if then else) is a conditional expression.

ite strictly evaluates the first argument condition.

Afterwards ite evaluates to

42

5 Mandatory Operations and Constants on Values

• ifTrue if condition evaluates to true
• ifFalse if condition evaluates to false
• ♢ if condition evaluates to ♢

5.1.2 Not

liftable
def not(arg: strict Bool): Bool

The logical not negates the value of the parameter.

not(true) ≡ false
not(false) ≡ true
not(♢) ≡ ♢

5.1.3 And

liftable
def and(lhs: strict Bool, rhs: lazy Bool): Bool

and is the logical and of two logical expressions.

The following equality holds:

and(lhs, rhs) ≡ ite(lhs, rhs, false)

5.1.4 Or

liftable
def or (lhs: strict Bool, rhs: lazy Bool): Bool

or is the logical or of two logical expressions.

The following equality holds:

or(lhs, rhs) ≡ ite(lhs, true, rhs)

43

5 Mandatory Operations and Constants on Values

5.2 Comparison

liftable
def eq[T](strict lhs: T, strict rhs: T): Bool

liftable
def neq[T](strict lhs: T, strict rhs: T): Bool

eq tests two values for equality, neq for inequality.

Implementations should uphold the equalities eq(𝑥, 𝑦) ≡ not(neq(𝑥, 𝑦)) and eq(𝑥, 𝑥)
≡ 𝑡𝑟𝑢𝑒.

However there are types which usually do not uphold these equalities for all values. For
some floating point values eq(𝑥, 𝑥) may evaluate to false.

5.3 Integer

Int is the integer type. The internal representation is backend specific but must at least
be able to represent values from −232 to 232 − 1. The behavior of operations which leads
to under- or overflows of the resulting integers is undefined.

An integer value can be created with the use of integer literals.

All following functions for type Int must be defined in the module Operators and so
are accessible by Operators.opName.

5.3.1 Integer Addition and Subtraction

liftable
def add(lhs: strict Int, rhs: strict Int): Int
liftable
def sub(lhs: strict Int, rhs: strict Int): Int

If either lhs or rhs is ♢, then the result is ♢. Otherwise the result is an operator specific
value.

Addition with add evaluates to lhs+rhs. Subtraction with sub evaluates to lhs−rhs.

5.3.2 Additive Inverse

liftable
def negate(arg: strict Int): Int

Application of negate evaluates to -arg.

44

5 Mandatory Operations and Constants on Values

5.3.3 Integer Multiplication

liftable
def mul(lhs: strict Int, rhs: strict Int): Int

If either lhs or rhs is ♢, then the result is ♢. Otherwise multiplication evaluates to
lhs⋅rhs

5.3.4 Integer Division

liftable
def div(lhs: strict Int, rhs: strict Int): Int
liftable
def mod(lhs: strict Int, rhs: strict Int): Int

If either lhs or rhs is ♢ or if rhs is 0, then the result is ♢.

Otherwise the operators evaluate to a specific value.

The division operator div evaluates to lhs/rhs. If lhs is no multiple of rhs, then any
fractional parts are truncated to zero.

mod evaluates to the remainder of the quotient l/r.

The equality

add(mul(div(lhs,rhs), rhs), mod(lhs,rhs)) ≡ lhs

holds, unless the operations produce ♢.

5.3.5 Bitwise Operations

liftable
def bitand(lhs: strict Int, rhs: strict Int): Int
liftable
def bitor(lhs: strict Int, rhs: strict Int): Int
liftable
def bitxor(lhs: strict Int, rhs: strict Int): Int

The operator performs a bitwise operation. The result is ♢ if either lhs or rhs is ♢.
Otherwise the operation performs the logical operation on each pair of matching bits,
which is and for bitand, or for bitor and exclusive or for bitxor.

45

5 Mandatory Operations and Constants on Values

5.3.6 Bit Flip

liftable
def bitflip(arg: strict Int): Int

The operator flips each bit in arg. The result is ♢ if arg is ♢.

5.3.7 Bit Shifts

liftable
def leftshift(lhs: strict Int, rhs: strict Int): Int
liftable
def rightshift(lhs: strict Int, rhs: strict Int): Int

The operator shifts each bit of the value in lhs by the value in rhs. If either lhs or rhs
are ♢, then the result is ♢.

5.3.8 Integer Comparison

liftable
def gt(lhs: strict Int, rhs: strict Int): Bool

liftable
def geq(lhs: strict Int, rhs: strict Int): Bool

liftable
def lt(lhs: strict Int, rhs: strict Int): Bool

liftable
def leq(lhs: strict Int, rhs: strict Int): Bool

Compares integers. gt returns whether lhs is larger than rhs, geq whether lhs is larger
or equal to rhs, lt whether lhs is less than rhs and leq whether lhs is less or equal
than rhs.

The following equalities hold:

gt(𝑥, 𝑦) ≡ lt(𝑦, 𝑥), geq(𝑥, 𝑦) ≡ leq(𝑦, 𝑥)

46

5 Mandatory Operations and Constants on Values

5.4 Float

Float is the floating point type.

A float value can be created with the use of float literals.

Details of the operations are left unspecified here. Implementations must comply to
IEEE 754-1985.

All following functions must be defined in the module Operators and so are accessable
by Operators.opName.

5.4.1 Float Addition

liftable
def fadd(lhs: strict Float, rhs: strict Float): Float
liftable
def fsub(lhs: strict Float, rhs: strict Float): Float

If either lhs or rhs is ♢, then the result is ♢. Otherwise the result is an operator specific
value.

Addition with fadd evaluates to lhs+rhs. Subtraction with fsub evaluates to
lhs−rhs.

5.4.2 Additive Inverse

liftable
def fnegate(arg: strict Float): Float

Application of fnegate evaluates to -arg.

5.4.3 Float Multiplication

liftable
def fmul(lhs: strict Float, rhs: strict Float): Float

If either lhs or rhs is ♢, then the result is ♢. Otherwise multiplication evaluates to
lhs⋅rhs.

47

5 Mandatory Operations and Constants on Values

5.4.4 Float Division

liftable
def fdiv(lhs: strict Float, rhs: strict Float): Float

If either lhs or rhs is ♢ or if rhs is 0, then the result is ♢. Otherwise the operators
evaluates to lhs/rhs.

5.4.5 Float Comparison

liftable
def fgt(lhs: strict Float, rhs: strict Float): Bool

liftable
def fgeq(lhs: strict Float, rhs: strict Float): Bool

liftable
def flt(lhs: strict Float, rhs: strict Float): Bool

liftable
def fleq(lhs: strict Float, rhs: strict Float): Bool

Compares floating point numbers. fgt returns whether lhs is larger than rhs, fgeq
whether lhs is larger or equal to rhs, flt whether lhs is less than rhs and fleq whether
lhs is less or equal than rhs.

5.5 String

String is the type for 8 bit character strings of arbitrary length.

A string value can be created with the use of string literals.

All following functions must be defined in the module String and so are accessible by
String.opName.

5.5.1 Conversion into String

liftable
def toString[T](s: strict T): String

If s is ♢, then the result is ♢. Otherwise the result is a string representation of the value
of s. The details of this representation are implementation specific.

48

5 Mandatory Operations and Constants on Values

5.5.2 String Concatenation

liftable
def concat(lhs: strict String, rhs: strict String): String

If either lhs or rhs is ♢, then the result is ♢. Otherwise concat returns a new string
which concatenates lhs and rhs.

5.5.3 String Formatting

liftable
def format[T](formatString: strict String, value: strict T): String

If either formatString or value is ♢, then the result is ♢. Otherwise the resulting
string is formatString, where the % character and the following formatting instructions
are replaced by a string representation of value, which is formatted according to the rules
described in section 4.13.3.1.

5.6 Option

The type Option[T] is either a value of Some(v) where v is a value of type T, a captured
error Some(♢) or it is the value None.

All following functions must be defined in the module Option and so are accessible by
Option.opName.

5.6.1 None

def None[T]: Option[T]

None is a generic constant of type Option[T].

5.6.2 Some

liftable
def Some[T](value: lazy T): Option[T]

Some(v) is a function that constructs a value of variant Some(v).

Some creates an object

• Some(𝑣′) if v evaluates to 𝑣′

• Some(♢) if v evaluates to ♢

49

5 Mandatory Operations and Constants on Values

The evaluation to Some(♢) is possible because of the lazyness of the parameter value.

5.6.3 isNone

liftable
def isNone[T](opt: strict Option[T]): Bool

isNone tests if an option is a variant of None.

isNone returns

• true if opt is a variant of None
• false if opt is a variant of Some
• ♢ if opt is ♢

5.6.4 isSome

liftable
def isSome[T](opt: strict Option[T]): Bool

isSome tests if a option is a variant of Some.

isSome returns

• true if opt is a variant of Some
• false if opt is a variant of None
• ♢ if opt is ♢

The following equality holds: isSome(t) ≡ not(isNone(t)) for all t.

5.6.5 getSome

liftable
def getSome[T](opt: strict Option[T]): T

getSome extracts the value v from the variant Some(v).

getSome returns

• v if opt is a variant of Some(v)
• ♢ if opt is a variant of Some(♢)
• ♢ if opt is a variant of None
• ♢ if opt is ♢

50

6 Mandatory Operations for Streams

The operations and types mentioned in this chapter have to be mandatorily supported
by every TeSSLa compiler.

They may be partly defined by TeSSLa expressions or by externs which are supported by
the backend. Basic definitions are contained in the official standard library, which can be
included during compilation. Alternatively the implementations are allowed to include
an individual library instead, where these operations are defined.

Events[T] is the type of streams over values of type T. There may be no streams based
on streams, i.e. T must be a value type.

The time domain is a numeric. It includes the common operations on numbers. Time
itself is never ♢, but some operations may return ♢. In this document this type is
referred to as TIME, its corresponding value range as Time. Implementations may use
INT, FLOAT or some other built-in type for the realization.

The data domain of a stream is 𝒯 = T ∪ {†}. † is an error event. Semantically † denotes
that a previous operation could not determine whether an event exists or not.

Note that the error value ♢ is still part of the data type T. Unlike † the value ♢ indicates
a valid event with an erroneous datum.

For describing the semantics of the stream operations the following paragraphs define a
notation for event streams. This notation is not part of the TeSSLa language.

A finite event stream over a data domain 𝒯 is a function 𝑓 ∶ Time → 𝒯⊥ depicting
from Time to 𝒯⊥ where 𝒯⊥ ∶= 𝒯 ∪ {⊥} and 𝑓(𝑡) ≠ ⊥ holds only for a finite number of
timestamps 𝑡.

We use ticks(𝑠) for the set {𝑡 ∈ Time ∣ 𝑠(𝑡) ∈ T} of timestamps where 𝑠 has events.

In the following we use the J⋅K operator to express the finite event stream value of a
stream expression. By the subsequent evaluation according to these rules the output
streams of a TeSSLa specification can be determined dependent on the input streams.

TeSSLa operators are monotone, continuous and future-independent. This makes it
possible to subsequently calculate the output events during receiving input events up to
the timestamp until which the input streams are known.

In this document a set of basic stream functions is defined which is sufficient to describe
any monotonous, continuous and future-independent transformation from input to output

51

6 Mandatory Operations for Streams

streams. For some backends it may be desirable to restrict these functions by skipping
the delay operator. However this causes that no events with timestamps other than input
timestamps can occur which makes TeSSLa less expressive.

The mentioned functions are defined top-level, i.e. not in a special module. For every
function the semantics is described in the mentioned stream notation or as TeSSLa
code.

6.1 Nil

def nil[T]: Events[T]

The nil stream is a stream, that never contains any events.

∀𝑡≥0 ∶ JnilK(𝑡) = ⊥

6.2 Unit

def unit: Events[()]

The unit stream is a stream, that has a single unit event at timestamp zero and no
events afterwards.

JunitK(0) = ()
∀𝑡>0 ∶ JunitK(𝑡) = ⊥

6.3 Default

def default[T](stream: strict Events[T], value: strict T):
Events[T]

default initializes a stream with value.

For timestamp 0 the output stream contains

• the event of stream at 0 if it has one
• † if stream has an † at 0
• value otherwise

52

6 Mandatory Operations for Streams

For other timestamps the output stream is equal to stream.

Jdefault(s, 𝑣)K(0) = {
JsK(0) if JsK(0) ≠ ⊥
𝑣 otherwise

∀𝑡>0 ∶ Jdefault(s, 𝑣)K(𝑡) = JsK(𝑡)

6.4 Time

def time[T](stream: strict Events[T]): Events[TIME]

The time operator carries an event for each event on the base stream with the value of
the according timestamp.

∀𝑡>0Jtime(s)K(𝑡) =
⎧{
⎨{⎩

† if JsK(𝑡) = †
𝑡 if 𝑡 ∈ ticks(JsK)
⊥ otherwise

time ignores the values on the stream. It returns the current time even if the value is
♢.

6.5 Lift

def lift𝑁[T1, T2, … T𝑁+1](stream1: strict Events[T1],
stream2: strict Events[T2], …
stream𝑁: strict Events[T𝑁],
f: (lazy Option[T1], lazy Option[T2], …

lazy Option[T𝑁])
=> Option[T𝑁+1]):

Events[T𝑁+1]

def lift = lift2

lift𝑁 lifts an 𝑁-ary function 𝑓 on values to a function on streams by applying 𝑓 to the
stream values for every timestamp.

Jlift𝑁(s1, … , s𝑁, f)K = 𝑧

where

53

6 Mandatory Operations for Streams

𝑧(𝑡) =
⎧{
⎨{⎩

⊥ if 𝑣𝑎𝑙𝑢𝑒𝑠(𝑡) = {⊥}
† if values(𝑡) = {⊥, †} or values(𝑡) = {†}
unwrap(𝑓(𝑠1(𝑡), … , 𝑠𝑁(𝑡))) otherwise

values(𝑡) = {Js1K(𝑡)} ∪ … ∪ {Js𝑁K(𝑡)}

𝑠𝑖(𝑡) =
⎧{
⎨{⎩

None if Js𝑖K(𝑡) = ⊥
♢ if Js𝑖K(𝑡) = †
Some(Js𝑖K(𝑡)) otherwise

unwrap(𝑥) =
⎧{
⎨{⎩

𝑙 if 𝑥 = Some(𝑙) for some 𝑙
⊥ if 𝑥 = None
† if 𝑥 = ♢

𝑓 is the value of the function representation f.

The function 𝑓 is only evaluated if at least one argument stream contains a valid event.
This means that a lift operator can only modify and remove events, but never create new
ones.

Options are used to represent existence or absence of events (see chapter 5).

Due to auto conversion for lazy/strict parameters (see section 3.4) it is also possible
to pass an f which takes (some) parameters strict. However this will not make any
semantical difference since the Option containers the arguments are wrapped into already
behave lazy.

lift𝑁 is defined at least until 𝑁 = 5, but may be defined for larger 𝑁.

6.6 Last

def last[T, U](stream: lazy Events[T], trigger: strict Events[U]):
Events[T]

The last operator carries an event with the last value of stream if trigger has an
event.

Jlast(s, t)K = 𝑧

54

6 Mandatory Operations for Streams

where

𝑧(𝑡) =
⎧{
⎨{⎩

† if JtK(𝑡) = † and ∃𝑡′<𝑡,𝑑isLast(𝑡, 𝑡′, JsK, 𝑑)
⊥ if JtK(𝑡) = ⊥ or ∀𝑡′<𝑡JsK(𝑡′) = ⊥
𝑑 if 𝑡 ∈ ticks(JtK) and ∃𝑡′<𝑡isLast(𝑡, 𝑡′, JsK, 𝑑)

where
isLast(𝑡, 𝑡′, 𝑣, 𝑑) ∶= 𝑣(𝑡′) = 𝑑 ∧ ∀𝑡″|𝑡′<𝑡″<𝑡𝑣(𝑡″) = ⊥

holds if 𝑣’s last event before timestamp 𝑡 is at timestamp 𝑡′ and has value 𝑑.

Note that the stream parameter of last is defined lazy to avoid infinite loops during
macro expansion, since last may be used in a recursive manner in terms of its first
parameter. Such a recursion is necessary to define a stream dependent on its last event.

6.7 Delay

def delay[T](delayTime: lazy Events[Int], reset: strict Events[T]):
Events[Unit]

delay produces an unit event, always if the reset stream carries an event or when delay
produces an event, delayed by a flexible time. With this operator events can be generated
at timestamps where no input stream has an event. Furthermore between two input
events infinitely many other events can be generated.

In detail delay takes a delay stream d (delayTime) and a reset stream r (reset).

If either JdK(𝑡) ∈ {†, ♢} or JrK(𝑡) = † or JdK(𝑡) ≤ 0 then delay panics. Otherwise

Jdelay(d, r)K = 𝑧

where

𝑧(𝑡) = {
() if ∃𝑡′<𝑡JdK(𝑡′) = 𝑡 − 𝑡′ ∧ setable(𝑧, JrK, 𝑡′) ∧ noreset(JrK, 𝑡′, 𝑡)
⊥ if ∀𝑡′<𝑡(JdK(𝑡′) ≠ 𝑡 − 𝑡′ ∨ unsetable(𝑧, JrK, 𝑡′) ∨ reset(JrK, 𝑡′, 𝑡))

with the following auxiliary functions:

setable(𝑧, 𝑟, 𝑡′) ∶= 𝑧(𝑡′) = () ∨ 𝑡′ ∈ ticks(𝑟),

which holds if 𝑧 is ready to receive a new delay time with respect to reset stream 𝑟

unsetable(𝑧, 𝑟, 𝑡′) ∶= 𝑧(𝑡′) = ⊥ ∧ 𝑟(𝑡′) = ⊥,

55

6 Mandatory Operations for Streams

which holds if 𝑧 is not ready to receive a new delay time with respect to reset stream 𝑟

reset(𝑟, 𝑡, 𝑡′) ∶= ∃𝑡″|𝑡<𝑡″<𝑡′𝑡″ ∈ ticks(𝑟),

which holds if reset stream 𝑟 contained an event between 𝑡 and 𝑡′ and

noreset(𝑟, 𝑡, 𝑡′) ∶= ∀𝑡″|𝑡<𝑡″<𝑡′𝑟(𝑡″) = ⊥.

which holds if reset stream 𝑟 does not contain an event between 𝑡 and 𝑡′

Note that the delayTime parameter of delay is defined lazy to avoid infinite loops during
macro expansion, since delay may be used in a recursive manner in terms of its first
parameter. Such a recursion is necessary to define a stream with periodic events.

6.8 Merge

def merge𝑁[T](s1: strict Events[T], s2: strict Events[T], …
s𝑁: strict Events[T]): Events[T]

The merge operator combines streams with preference from left to right.

The semantics of merge𝑁 can be fully defined by other TeSSLa stream operators:

import Option

def merge𝑁[T](s1: strict Events[T], s2: strict Events[T], …
s𝑁: strict Events[T]): Events[T] = {

lift𝑁(s1, s2, … s𝑁, (x1: lazy Option[T],
x2: lazy Option[T], …,
x𝑁: lazy Option[T]) => {

if (!isNone(x1))
then x1
else if (!isNone(x2))
then x2
⋮
else if (!isNone(x𝑁))
then x𝑁
else None[T]

})
}

Details about Option can be found in chapter 5.

merge𝑁 is defined at least until 𝑁 = 5, but may be defined for larger 𝑁.

56

6 Mandatory Operations for Streams

6.9 Signal lift

def slift𝑁[T1, T2, … T𝑁+1](stream1: strict Events[T1],
stream2: strict Events[T2], …
stream𝑁: strict Events[T𝑁],
f: (lazy T1,

lazy T2, …
lazy T𝑁) => T𝑁+1) :

Events[T𝑁+1]

def slift = slift2

The signal lift applies a function to the current or last value of each stream.

It does not produce an event unless it has received at least one event on each stream.
Afterwards it produces an event whenever it receives an event on any stream. This
resulting event contains the value of the function f applied to the current or last value of
each stream.

The semantics of slift𝑁 can be fully defined by other TeSSLa stream operators:

import Option

def slift𝑁[T1, T2, … T𝑁+1](stream1: strict Events[T1],
stream2: strict Events[T2], …
stream𝑁: strict Events[T𝑁],
f: (lazy T1,

lazy T2, …
lazy T𝑁) => T𝑁+1) :

Events[T𝑁+1] = {

def s1 = merge𝑁(stream1, last(stream1, stream2), last(stream1, stream3),
…, last(stream1, stream𝑁))

def s2 = merge𝑁(stream2, last(stream2, stream1), last(stream2, stream3),
…, last(stream2, stream𝑁))

⋮
def s𝑁 = merge𝑁(stream𝑁, last(stream𝑁, stream1), last(stream𝑁, stream2),

…, last(stream𝑁, stream𝑁−1))

lift𝑁(s1, s2, …, s𝑁,
(x1: lazy Option[T1], x2: lazy Option[T2], …,
x𝑁: lazy Option[T𝑁]) => {

if (isNone(x1) || isNone(x2) || … || isNone(x𝑁)) then
None[T𝑁+1]

else

57

6 Mandatory Operations for Streams

Some(f(getSome(x1), getSome(x2), …, getSome(x𝑁)))
})

}

Due to auto conversion for lazy/strict parameters (see section 3.4) it is also possible to
pass an 𝑓 which takes (some) parameters strict. If any of the streams of a strict parameter
contains an error, the slift also evaluates to an error.

slift𝑁 is defined at least until 𝑁 = 5, but may be defined for larger 𝑁.

58

	Introduction
	Copyright Notice
	Document and Language Versioning
	Structure of the Specification
	List of Contributors
	Resources
	Notation

	Lexical syntax
	Unicode
	Notation
	Lexical Structure
	Comments
	Identifiers

	Keywords
	Literals
	Integer Literals
	Float Literals
	String literals

	Operators
	Time Unit
	End of Statement
	Spaces
	Newlines

	TeSSLa Core
	Specification Structure
	Values
	Types
	Type Equality
	Expressions
	Constants
	Identifiers
	Extern References
	Function Definitions
	Call Expression
	Record Definitions
	Record Access
	Tuple Definitions
	Type Application

	Annotation Usage
	Input Streams
	Output Streams
	Definitions

	TeSSLa
	Specification Structure
	Types
	Annotation Definitions
	Annotation Usage
	Input Streams
	Output Streams
	Modules
	Imports
	Function Definition
	Extern Definitions
	Variable Definition
	Type Definition
	Expressions
	Literals
	Time Units
	String Interpolation
	Operators
	Variable/Parameter Access
	Grouping
	Block Expressions
	Call Expressions
	Record and Tuple Creation
	Member Access
	Lambda Expression

	Macro Expansion and Constant Evaluation
	Type Inference and Type Checking
	Expression types
	Implicit Conversion

	Mandatory Operations and Constants on Values
	Bool
	If-Then-Else
	Not
	And
	Or

	Comparison
	Integer
	Integer Addition and Subtraction
	Additive Inverse
	Integer Multiplication
	Integer Division
	Bitwise Operations
	Bit Flip
	Bit Shifts
	Integer Comparison

	Float
	Float Addition
	Additive Inverse
	Float Multiplication
	Float Division
	Float Comparison

	String
	Conversion into String
	String Concatenation
	String Formatting

	Option
	None
	Some
	isNone
	isSome
	getSome

	Mandatory Operations for Streams
	Nil
	Unit
	Default
	Time
	Lift
	Last
	Delay
	Merge
	Signal lift

