
Optimizing Trans-Compilers in Runtime
Verification makes Sense – Sometimes

Hannes Kallwies Martin Leucker Meiko Prilop Malte Schmitz

Institute for Software Engineering and Programming Languages,
University of Lübeck, Lübeck, Germany

16th International Symposium on Theoretical Aspects of Software Engineering, July 2022

Runtime Verification: General idea

3
Executable

<
Source Code

�
Event Declaration

2
Event
Generator

φ
Specification

Mφ

Monitor

✔
✘

Verdict

e4 e3 e2

Events

e1

Kallwies, Leucker, Prilop, Schmitz TASE, July ’22 2

Stream Runtime Verification

Idea: Use dataflow-oriented languages (similar to Lustre, Lucid, Esterell...) to
describe system properties and generate monitors.

Basic concept: Input streams are combined with operators to generate
output streams.

Popular SRV languages:
▶ LOLA
▶ Striver
▶ TeSSLa 1 4 7 8 3 5

9 6 2 1

input

output

f

time
1 2 3 4 5 6

Kallwies, Leucker, Prilop, Schmitz TASE, July ’22 3

Stream Runtime Verification with TeSSLa

i n t main () {
while (1) {

lock () ;
c r i t i c a l () ;
unlock () ;

}
}

@InstFunct ionCal l (" lock ")
in lock : Events [Unit]

@InstFunct ionCal l (" unlock ")
in unlock : Events [Unit]

@InstFunct ionCal l (" c r i t i c a l ")
in c r i t : Events [Unit]

out on (c r i t , count (lock) −
count (unlock) == 1)

as v e r d i c t

3
Executable

2
Event
Generator

Mφ

Monitor

✔
✘

Verdict

e4 e3 e2

Events

e1

Kallwies, Leucker, Prilop, Schmitz TASE, July ’22 4

Monitor generation from a TeSSLa specification

▶ TeSSLa specifications can be compiled to Scala monitors
(Trans-Compiler)

▶ Every TeSSLa specification can be described by 6 core stream operators +
function definitions (TeSSLa Core)

▶ TeSSLa offers possibility to define own stream operators as macros and
offers Stdlib of common functions

TeSSLa Specification TeSSLa Core Intermediate Code Scala Code

Kallwies, Leucker, Prilop, Schmitz TASE, July ’22 5

Monitor generation from a TeSSLa specification

▶ TeSSLa specifications can be compiled to Scala monitors
(Trans-Compiler)

▶ Every TeSSLa specification can be described by 6 core stream operators +
function definitions (TeSSLa Core)

▶ TeSSLa offers possibility to define own stream operators as macros and
offers Stdlib of common functions

TeSSLa Specification TeSSLa Core Intermediate Code Scala Code

Kallwies, Leucker, Prilop, Schmitz TASE, July ’22 5

Monitor generation from a TeSSLa specification

▶ TeSSLa specifications can be compiled to Scala monitors
(Trans-Compiler)

▶ Every TeSSLa specification can be described by 6 core stream operators +
function definitions (TeSSLa Core)

▶ TeSSLa offers possibility to define own stream operators as macros and
offers Stdlib of common functions

TeSSLa Specification TeSSLa Core Intermediate Code Scala Code

Kallwies, Leucker, Prilop, Schmitz TASE, July ’22 5

Monitor generation from a TeSSLa specification

TeSSLa specification

in x : Events [I n t]
def o = count (x)

TeSSLa Core (schema)

def v0 : I n t = 1
def s e t D e f a u l t = [. . .]
def addOne = (i : s t r i c t Option [I n t]) => {

def v1 : I n t = getSome (i)
def v2 : I n t = add (v1 , v0)
def v3 : Option [I n t] = Some (v2)
v3

}

in x : Events [I n t]
def v4 : Events [I n t] = l a s t (o , x)
def v5 : Events [I n t] = l i f t (v4 , addOne)
def v6 : Events [I n t] = unit
def o : Events [I n t] = l i f t (v5 , v6 , s e t D e f a u l t)

Kallwies, Leucker, Prilop, Schmitz TASE, July ’22 6

Monitor generation from a TeSSLa specification

Generated Scala Code (schema)

/ / Var d e c l a r a t i o n s f o r non−s t r e am c o n s t a n t s
var v0 : I n t = 0
var s e t D e f a u l t : (Option [I n t] , Option [()]) => Option [I n t] = null
var addOne : (Option [I n t]) => Option [I n t] = null

/ / I n i t i a l i z a t i o n o f non−s t r e am c o n s t a n t s
v0 = 1
s e t D e f a u l t = [. . .]
addOne = [. . .]

/ / V a r i a b l e s f o r t h e s t a t e o f e a c h s t r e am (5 s t r e a m s)
var x_changed : Bool = f a l s e
var x_hasLast : Bool = f a l s e
var x_curr : I n t = 0
var x _ l a s t : I n t = 0
[. . .]

/ / E v a l u a t i o n f u n c t i o n
def c a l c u l a t e (t s : I n t) = {

/ / d e f v4 : Events [I n t] = l a s t (o , x)
i f (x_changed && o_hasLast) {

v 4 _ l a s t = v4_curr
v4_curr = o _ l a s t
[. . .]

}
[. . .]

}

Kallwies, Leucker, Prilop, Schmitz TASE, July ’22 7

Monitor generation from a TeSSLa specification

TeSSLa compiler uses straight-forward translation strategy

Advantages:
▶ Easy to implement, no complex analysis phases
▶ Translation schemes required only six core operators + some basic

functions

Disadvantages:
▶ Lengthy and hard to read code
▶ Inefficient code (lots of variable declarations, complex code)

⇒ No problem, target compiler will optimize code.

Won’t it?

Kallwies, Leucker, Prilop, Schmitz TASE, July ’22 8

Monitor generation from a TeSSLa specification

TeSSLa compiler uses straight-forward translation strategy

Advantages:
▶ Easy to implement, no complex analysis phases
▶ Translation schemes required only six core operators + some basic

functions

Disadvantages:
▶ Lengthy and hard to read code
▶ Inefficient code (lots of variable declarations, complex code)

⇒ No problem, target compiler will optimize code.

Won’t it?

Kallwies, Leucker, Prilop, Schmitz TASE, July ’22 8

Monitor generation from a TeSSLa specification

TeSSLa compiler uses straight-forward translation strategy

Advantages:
▶ Easy to implement, no complex analysis phases
▶ Translation schemes required only six core operators + some basic

functions

Disadvantages:
▶ Lengthy and hard to read code
▶ Inefficient code (lots of variable declarations, complex code)

⇒ No problem, target compiler will optimize code.

Won’t it?

Kallwies, Leucker, Prilop, Schmitz TASE, July ’22 8

Monitor generation from a TeSSLa specification

TeSSLa compiler uses straight-forward translation strategy

Advantages:
▶ Easy to implement, no complex analysis phases
▶ Translation schemes required only six core operators + some basic

functions

Disadvantages:
▶ Lengthy and hard to read code
▶ Inefficient code (lots of variable declarations, complex code)

⇒ No problem, target compiler will optimize code.

Won’t it?

Kallwies, Leucker, Prilop, Schmitz TASE, July ’22 8

Monitor generation from a TeSSLa specification

TeSSLa compiler uses straight-forward translation strategy

Advantages:
▶ Easy to implement, no complex analysis phases
▶ Translation schemes required only six core operators + some basic

functions

Disadvantages:
▶ Lengthy and hard to read code
▶ Inefficient code (lots of variable declarations, complex code)

⇒ No problem, target compiler will optimize code. Won’t it?

Kallwies, Leucker, Prilop, Schmitz TASE, July ’22 8

Compiler optimizations

1. Extend set of core operators by stdlib functions (count, const, default,
fold ...)

⇒ Scala-DSL in compiler to add translation schemes easily in a generic
fashion.

2. Avoidance of dummy initialization and usage of val keyword where
possible

⇒ Simple loop analysis to detect dependency cycles.

Kallwies, Leucker, Prilop, Schmitz TASE, July ’22 9

Compiler optimizations

1. Extend set of core operators by stdlib functions (count, const, default,
fold ...)

⇒ Scala-DSL in compiler to add translation schemes easily in a generic
fashion.

2. Avoidance of dummy initialization and usage of val keyword where
possible

⇒ Simple loop analysis to detect dependency cycles.

Kallwies, Leucker, Prilop, Schmitz TASE, July ’22 9

Compiler optimizations

1. Extend set of core operators by stdlib functions (count, const, default,
fold ...)

⇒ Scala-DSL in compiler to add translation schemes easily in a generic
fashion.

2. Avoidance of dummy initialization and usage of val keyword where
possible

⇒ Simple loop analysis to detect dependency cycles.

Kallwies, Leucker, Prilop, Schmitz TASE, July ’22 9

Compiler optimizations

1. Extend set of core operators by stdlib functions (count, const, default,
fold ...)

⇒ Scala-DSL in compiler to add translation schemes easily in a generic
fashion.

2. Avoidance of dummy initialization and usage of val keyword where
possible

⇒ Simple loop analysis to detect dependency cycles.

Kallwies, Leucker, Prilop, Schmitz TASE, July ’22 9

Compiler optimizations

Generated Scala Code with optimization (schema)

/ / Var d e c l a r a t i o n s f o r non−s t r e am c o n s t a n t s
val v0 : I n t = 0
val s e t D e f a u l t : (Option [I n t] , Option [()]) => Option [I n t] = [. . .]
val addOne : (Option [I n t]) => Option [I n t] = [. . .]

/ / V a r i a b l e s f o r t h e s t a t e o f e a c h s t r e am (2 s t r e a m s)
var x_changed : Bool = f a l s e
var x_hasLast : Bool = f a l s e
var x_curr : I n t = 0
var x _ l a s t : I n t = 0
[. . .]

/ / E v a l u a t i o n f u n c t i o n
def c a l c u l a t e (t s : I n t) = {

/ / d e f o : Events [I n t] = count (x)
i f (x_changed) {

o _ l a s t = o_curr
o_curr = o_curr + 1
o_changed = true
o_hasLast = true

}

}

Kallwies, Leucker, Prilop, Schmitz TASE, July ’22 10

Evaluation

boolFilter count average accSum timeFilter election
0

50

100

%
of

un
op

t.
ru

nt
im

e

Without optimizations
Extended Core optimization
Both TeSSLa optimizations

Kallwies, Leucker, Prilop, Schmitz TASE, July ’22 11

Conclusion

▶ For monitor generation TeSSLa is compiled to TeSSLa Core and then to
Scala code

▶ Straight-forward strategy produces inefficient code
▶ Introducing new core operators led to higher monitor performance
▶ Avoiding dummy initialization did not to affect the monitor

performance

Insight: While small optimizations do often not lead to performance gains in
trans-compilers, optimizations affecting significantly the structure of the
code may improve the overall performance.

⇒ Optimizing Trans-Compilers in Runtime Verification makes Sense –
Sometimes

Kallwies, Leucker, Prilop, Schmitz TASE, July ’22 12

Conclusion

▶ For monitor generation TeSSLa is compiled to TeSSLa Core and then to
Scala code

▶ Straight-forward strategy produces inefficient code
▶ Introducing new core operators led to higher monitor performance
▶ Avoiding dummy initialization did not to affect the monitor

performance

Insight: While small optimizations do often not lead to performance gains in
trans-compilers, optimizations affecting significantly the structure of the
code may improve the overall performance.

⇒ Optimizing Trans-Compilers in Runtime Verification makes Sense –
Sometimes

Kallwies, Leucker, Prilop, Schmitz TASE, July ’22 12

Conclusion

▶ For monitor generation TeSSLa is compiled to TeSSLa Core and then to
Scala code

▶ Straight-forward strategy produces inefficient code
▶ Introducing new core operators led to higher monitor performance
▶ Avoiding dummy initialization did not to affect the monitor

performance

Insight: While small optimizations do often not lead to performance gains in
trans-compilers, optimizations affecting significantly the structure of the
code may improve the overall performance.

⇒ Optimizing Trans-Compilers in Runtime Verification makes Sense –
Sometimes

Kallwies, Leucker, Prilop, Schmitz TASE, July ’22 12

