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Runtime Verification: General idea

3
Executable

<
Source Code

�
Event Declaration

2
Event
Generator

φ
Specification

Mφ

Monitor

✔
✘

Verdict

e4 e3 e2

Events

e1

Kallwies, Leucker, Prilop, Schmitz TASE, July ’22 2



Stream Runtime Verification

Idea: Use dataflow-oriented languages (similar to Lustre, Lucid, Esterell...) to
describe system properties and generate monitors.

Basic concept: Input streams are combined with operators to generate
output streams.

Popular SRV languages:
▶ LOLA
▶ Striver
▶ TeSSLa 1 4 7 8 3 5

9 6 2 1

input

output

f

time
1 2 3 4 5 6

Kallwies, Leucker, Prilop, Schmitz TASE, July ’22 3



Stream Runtime Verification with TeSSLa

i n t main ( ) {
while ( 1 ) {

lock ( ) ;
c r i t i c a l ( ) ;
unlock ( ) ;

}
}

@InstFunct ionCal l ( " lock " )
in lock : Events [ Unit ]

@InstFunct ionCal l ( " unlock " )
in unlock : Events [ Unit ]

@InstFunct ionCal l ( " c r i t i c a l " )
in c r i t : Events [ Unit ]

out on ( c r i t , count ( lock ) −
count ( unlock ) == 1)

as v e r d i c t
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Monitor generation from a TeSSLa specification

▶ TeSSLa specifications can be compiled to Scala monitors
(Trans-Compiler)

▶ Every TeSSLa specification can be described by 6 core stream operators +
function definitions (TeSSLa Core)

▶ TeSSLa offers possibility to define own stream operators as macros and
offers Stdlib of common functions

TeSSLa Specification TeSSLa Core Intermediate Code Scala Code
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Monitor generation from a TeSSLa specification

TeSSLa specification

in x : Events [ I n t ]
def o = count ( x )

TeSSLa Core (schema)

def v0 : I n t = 1
def s e t D e f a u l t = [ . . . ]
def addOne = ( i : s t r i c t Option [ I n t ] ) => {

def v1 : I n t = getSome ( i )
def v2 : I n t = add ( v1 , v0 )
def v3 : Option [ I n t ] = Some ( v2 )
v3

}

in x : Events [ I n t ]
def v4 : Events [ I n t ] = l a s t ( o , x )
def v5 : Events [ I n t ] = l i f t ( v4 , addOne )
def v6 : Events [ I n t ] = unit
def o : Events [ I n t ] = l i f t ( v5 , v6 , s e t D e f a u l t )
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Monitor generation from a TeSSLa specification

Generated Scala Code (schema)

/ / Var d e c l a r a t i o n s f o r non−s t r e am c o n s t a n t s
var v0 : I n t = 0
var s e t D e f a u l t : ( Option [ I n t ] , Option [ ( ) ] ) => Option [ I n t ] = null
var addOne : ( Option [ I n t ] ) => Option [ I n t ] = null

/ / I n i t i a l i z a t i o n o f non−s t r e am c o n s t a n t s
v0 = 1
s e t D e f a u l t = [ . . . ]
addOne = [ . . . ]

/ / V a r i a b l e s f o r t h e s t a t e o f e a c h s t r e am (5 s t r e a m s )
var x_changed : Bool = f a l s e
var x_hasLast : Bool = f a l s e
var x_curr : I n t = 0
var x _ l a s t : I n t = 0
[ . . . ]

/ / E v a l u a t i o n f u n c t i o n
def c a l c u l a t e ( t s : I n t ) = {

/ / d e f v4 : Events [ I n t ] = l a s t ( o , x )
i f ( x_changed && o_hasLast ) {

v 4 _ l a s t = v4_curr
v4_curr = o _ l a s t
[ . . . ]

}
[ . . . ]

}
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Monitor generation from a TeSSLa specification

TeSSLa compiler uses straight-forward translation strategy

Advantages:
▶ Easy to implement, no complex analysis phases
▶ Translation schemes required only six core operators + some basic

functions

Disadvantages:
▶ Lengthy and hard to read code
▶ Inefficient code (lots of variable declarations, complex code)

⇒ No problem, target compiler will optimize code.

Won’t it?
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Compiler optimizations

1. Extend set of core operators by stdlib functions (count, const, default,
fold ...)

⇒ Scala-DSL in compiler to add translation schemes easily in a generic
fashion.

2. Avoidance of dummy initialization and usage of val keyword where
possible

⇒ Simple loop analysis to detect dependency cycles.
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Compiler optimizations

Generated Scala Code with optimization (schema)

/ / Var d e c l a r a t i o n s f o r non−s t r e am c o n s t a n t s
val v0 : I n t = 0
val s e t D e f a u l t : ( Option [ I n t ] , Option [ ( ) ] ) => Option [ I n t ] = [ . . . ]
val addOne : ( Option [ I n t ] ) => Option [ I n t ] = [ . . . ]

/ / V a r i a b l e s f o r t h e s t a t e o f e a c h s t r e am (2 s t r e a m s )
var x_changed : Bool = f a l s e
var x_hasLast : Bool = f a l s e
var x_curr : I n t = 0
var x _ l a s t : I n t = 0
[ . . . ]

/ / E v a l u a t i o n f u n c t i o n
def c a l c u l a t e ( t s : I n t ) = {

/ / d e f o : Events [ I n t ] = count ( x )
i f ( x_changed ) {

o _ l a s t = o_curr
o_curr = o_curr + 1
o_changed = true
o_hasLast = true

}

}
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Evaluation
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Conclusion

▶ For monitor generation TeSSLa is compiled to TeSSLa Core and then to
Scala code

▶ Straight-forward strategy produces inefficient code
▶ Introducing new core operators led to higher monitor performance
▶ Avoiding dummy initialization did not to affect the monitor

performance

Insight: While small optimizations do often not lead to performance gains in
trans-compilers, optimizations affecting significantly the structure of the
code may improve the overall performance.

⇒ Optimizing Trans-Compilers in Runtime Verification makes Sense –
Sometimes

Kallwies, Leucker, Prilop, Schmitz TASE, July ’22 12



Conclusion

▶ For monitor generation TeSSLa is compiled to TeSSLa Core and then to
Scala code

▶ Straight-forward strategy produces inefficient code
▶ Introducing new core operators led to higher monitor performance
▶ Avoiding dummy initialization did not to affect the monitor

performance

Insight: While small optimizations do often not lead to performance gains in
trans-compilers, optimizations affecting significantly the structure of the
code may improve the overall performance.

⇒ Optimizing Trans-Compilers in Runtime Verification makes Sense –
Sometimes

Kallwies, Leucker, Prilop, Schmitz TASE, July ’22 12



Conclusion

▶ For monitor generation TeSSLa is compiled to TeSSLa Core and then to
Scala code

▶ Straight-forward strategy produces inefficient code
▶ Introducing new core operators led to higher monitor performance
▶ Avoiding dummy initialization did not to affect the monitor

performance

Insight: While small optimizations do often not lead to performance gains in
trans-compilers, optimizations affecting significantly the structure of the
code may improve the overall performance.

⇒ Optimizing Trans-Compilers in Runtime Verification makes Sense –
Sometimes

Kallwies, Leucker, Prilop, Schmitz TASE, July ’22 12


