
TeSSLa:
Temporal Stream-based Specification Language

Lukas Convent Sebastian Hungerecker Torben Scheffel
Malte Schmitz Daniel Thoma

Institute for Software Engineering and Programming Languages,
University of Lübeck, Germany

The 21th Brazilian Symposium on Formal Methods

Motivation: Monitoring Program Flow Trace

System	under	Observa�on
(ARM	Cortex-A9	/	Cortex-A53)

Tr
ac
e
Bu

ff
er
&
Co
nc
en
tr
at
or

Tr
ac
e	
Po

rtCPU	0

CPU	1

CPU n

PFT/ETM

PFT/ETM

PFT/ETM

PFT/ETM

STM/ITM

Per

Mem

Mem

CPU	2

Analyzer
(Binary)

TeSSLa	Compiler

C	Compiler

Trace	Preprocessing
and	Reconstruc�on

Trace	Analysis
Monitoring

Monitoring

Monitoring	Hardware

Events
Post	Processing

ReportEvents Events

Specifica�onC	Code

Binary

Frontend

Ob
je
ct	
Co
de

De
bu
g	
Sy
m
bo
ls

Observa�on
Configura�on

Monitor
Configura�on

Observa�on
Specifica�on

Monitor
Specifica�on

Meta	Info
rma�on

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 1

Stream Processing: Technical Prerequisites

I Multi-core CPUs generate large amounts of trace data.
=⇒ Perform monitoring in hardware.

I FPGAs have limited amount of memory.
=⇒ Explicit memory usage. Constant memory usage per operator.

I Properties and analyses might become very complex.
=⇒ Combined monitoring on hardware and in software.

I Timing is crucial in embedded and cyber-physical systems.
=⇒ Support time as first-class citizen.

I Properties and analyses might require data.
=⇒ Support analyses and aggregation of data values.

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 2

TeSSLa Design Goals

I Declarative style: Specification rather than implementation

I Modularity: Allowing abstractions based on few primitives

I Time as first-class citizen

I Abstractions for both events and signals

I Recursion to reason about past

I Implementable with limited memory

I Handle both sparse and fine grained event streams simultaniously

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 3

TeSSLa by Example

a 2 4 6

b 1 3 5

c 3 5 7 11

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 4

TeSSLa by Example

a 2 4 6

b 1 3 5

c 3 5 7 11

def c := a + b

x

c 0 1 2 3 4 5 6

r

c 0 1 2 3 0 1 0 1 2

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 4

TeSSLa by Example

a 2 4 6

b 1 3 5

c 3 5 7 11

def c := a + b

x

c 0 1 2 3 4 5 6

r

c 0 1 2 3 0 1 0 1 2

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 4

TeSSLa by Example

a 2 4 6

b 1 3 5

c 3 5 7 11

def c := a + b

x

c 0 1 2 3 4 5 6

r

c 0 1 2 3 0 1 0 1 2

def c := eventCount(x)

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 4

TeSSLa by Example

a 2 4 6

b 1 3 5

c 3 5 7 11

def c := a + b

x

c 0 1 2 3 4 5 6

r

c 0 1 2 3 0 1 0 1 2

def c := eventCount(x, reset = r)

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 4

Syntax

e ::=nil | unit | x |

lift(f)(e, . . . , e) |

time(e) |

last(e, e) |

delay(e, e)

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 5

Core Operators: Lift

I How to do point-wise operations on streams?

def f[A, B](a: Option[A], b: Option[B]): Option[A] :=
if(isDefined(b)) then a else None

1 2 3 4x

y

2 3lift(f)(x, y)

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 6

Derived Operators: Signal Lift of Addition

I Signal lift allows to lift operations on arbitrary data types to streams.
I E.g. the addition on integer numbers can be lifted to streams of integers.

a 2 4

b 1 3

a + b 3 5 7

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 7

Derived Operators: Signal Lift of Negation

I Signal lift allows to lift operations on arbitrary data types to streams.
I E.g. the negation of booleans can be lifted to a stream of booleans.

a true false true

¬a false true false

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 8

Derived Operators: Signal Lift of If-Then-Else

I Signal lift allows to lift operations on arbitrary data types to streams.
I E.g. the ternary if-then-else function can be lifted to

a stream of booleans and two streams of identical type.

a 1 3

b 2 4

a > b false true false

if a > b then a else b 2 3 4

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 9

Derived Operators: Filter

I Process streams in an event-oriented fashion
I Filter the events of one stream based on a second boolean stream

interpreted as piecewise constant signal.

1 2 3 4 5x

a true false true

1 4 5filter(x, a)

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 10

Derived Operators: Merge

I Process streams in an event-oriented fashion
I Merge combines two streams into one,

giving preference to the first stream when both streams contain identical
timestamps.

2 4x

1 3y

2 1 4merge(x, y)

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 11

Core Operators: Last

I Needed to define properties over sequences of events.
I Last allows to refer to the values of events on one stream

that occurred strictly before the events on another stream

1 2 3 4x

y

1 3 3last(x, y)

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 12

Core Operators: Time

I Provides access to the timestamps of events
I Produces events carrying their timestamps as data value
I Hence all operators for data values can be applied to timestamps.

1 3 4
x

1 3 4time(x)

1 3last(time(x), x)

2 1time(x)− last(time(x), x)

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 13

Core Operators: Delay

I Allows to create new timestamps

4 2 3d

r

delay(d, r)

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 14

Core Operators: Const and Nil

I The constant nil for the empty stream
I The operator const converting a value to a stream

starting with that value at timestamp 0.

Implicit Conversions
I Integer and Boolean constants

are converted to streams via const.
I Build-in operators on integers and Booleans

are lifted to streams via signal lift.

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 15

Recursive Equations in TeSSLa

I The last operator allows to write recursive equations
I The merge operation allows to initialize recursive equations with an

initial event from an other stream.
I Express aggregation operations like the sum over all values of a stream.
I Evaluation algorithm iterates progressing event streams until

fixed-point is reached.

2 1 3x

0 2 3last(s, x)

s 0 2 3 5

def s := merge(last(s, x) + x, 0)

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 16

Recursive Equations in TeSSLa: How It Works

2 1x

0 2

last(s, x)

2 3

last(s, x) + x

00

0 2 3

s = merge(last(s, x) + x, 0)

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 17

Recursive Equations in TeSSLa: How It Works

2 1x

0 2

last(s, x)

2 3

last(s, x) + x

00

0

2 3

s = merge(last(s, x) + x, 0)

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 17

Recursive Equations in TeSSLa: How It Works

2 1x

0

2

last(s, x)

2 3

last(s, x) + x

00

0

2 3

s = merge(last(s, x) + x, 0)

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 17

Recursive Equations in TeSSLa: How It Works

2 1x

0

2

last(s, x)

2

3

last(s, x) + x

00

0 2

3

s = merge(last(s, x) + x, 0)

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 17

Recursive Equations in TeSSLa: How It Works

2 1x

0

2

last(s, x)

2

3

last(s, x) + x

00

0 2

3

s = merge(last(s, x) + x, 0)

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 17

Recursive Equations in TeSSLa: How It Works

2 1x

0 2last(s, x)

2

3

last(s, x) + x

00

0 2

3

s = merge(last(s, x) + x, 0)

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 17

Recursive Equations in TeSSLa: How It Works

2 1x

0 2last(s, x)

2 3last(s, x) + x

00

0 2 3s = merge(last(s, x) + x, 0)

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 17

Recursive Equations in TeSSLa: How It Works

2 1x

0 2last(s, x)

2 3last(s, x) + x

00

0 2 3s = merge(last(s, x) + x, 0)

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 17

Macros in TeSSLa: eventCount

Count the number of events on `values`.
def eventCount[A,B](values: Events[A]) := {

def count: Events[Int] := merge(
increment counter
last(count, values) + 1

, 0)
count

}

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 18

Computabilitiy and Well-formed Specifications

I All specifications exhibt a unique least fixed-point
I Consequence of monotonic and continuous operators

I Computablity:
I In presence of delay, distances between events might converge
I We can compute chain of pre-fixed-points, i.e. finite prefixes of output

streams
I Without delay, least fixed-point can always be reached
I One computation step per operator per progress step

I Well-formed fragement:
I Recursions guarded by last or delay
I Only value/delay may be directly recursive
I For non-well-formed specifications smalles fixed-point undesireable

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 19

Properties and Fragments

I Complete TeSSLa is equivalent to
I continuous and monotone and
I future independent stream transformations.

I TeSSLa without delay is equivalten to
I continuous and monotone and
I future independent and
I timestamp conservative stream transformations.

I Boolean fragement (inequations on time) is equivalent to finite state
transducers

I Timed Fragement (linear constraints on time) is equivalent to
deterministic timed transducers

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 20

Implementations and Data Types

I JVM based interpreter
I Hardware-implemented interpreter
I Synthesis to FPGA

I TeSSLa is defined agnostically with respect
to any time or data domain.

I Different data structures can be used
to represent time and data.

I Monitoring in hardware:
atomic data types, e.g. int or float.

I Monitoring in software:
complex data structures like lists, trees and maps.

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 21

Conclusion

I Using TeSSLa we can check
I event ordering constraints
I timing constraints
I complex event patterns

I TeSSLa can be used to aggregate data and compute statistical data
I Can express large classes of stream transformations

I Sparse and fine graned event streams
I Explicit controll over memory requirements

I Relation to well-studied models (finite and timed automata)
I Decidability results for corresponding fragements

I There is a software interpreter (see tessla.io).
I Very small core language (2-3 operators).
I Open to many other applications
I Suited for hardware-based implementations

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 22

