ERSI
RN .
3 %
’ & UNIVERSITAT ZU LUBECK | S
3 ~
iy 3
s.s18

TeSSLa:
Temporal Stream-based Specification Language

Lukas Convent Sebastian Hungerecker =~ Torben Scheffel
Malte Schmitz Daniel Thoma

Institute for Software Engineering and Programming Languages,
University of Liibeck, Germany

The 21th Brazilian Symposium on Formal Methods

Motivation: Monitoring Program Flow Trace

{ Monitoring

System under Observation Monitoring Hardware
(ARM Cortex A9 / Contex-AS3)

Trace Analysis
Monitoring

Trace Preprocessing Post Processing

and Reconstruction

Monitor

Observation
Configuration

Configuration

Binary : Anal
: nalyzer :
(Binary) TeSSLa Compiler

Monitor
Specification

Observation
Specification

C Compiler

n
aeta o

Frontend

Specification

€ Code

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018

Stream Processing: Technical Prerequisites

» Multi-core CPUs generate large amounts of trace data.
= Perform monitoring in hardware.

» FPGAs have limited amount of memory.
— Explicit memory usage. Constant memory usage per operator.

» Properties and analyses might become very complex.
= Combined monitoring on hardware and in software.

» Timing is crucial in embedded and cyber-physical systems.
= Support time as first-class citizen.

» Properties and analyses might require data.
= Support analyses and aggregation of data values.

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018

TeSSLa Design Goals

» Declarative style: Specification rather than implementation
> Modularity: Allowing abstractions based on few primitives
» Time as first-class citizen

> Abstractions for both events and signals

> Recursion to reason about past

» Implementable with limited memory

» Handle both sparse and fine grained event streams simultaniously

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018

TeSSLa by Example

al 2 X 4

bl 1 X 3

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018

TeSSLa by Example

4 X
b| 1 X 3 X 5
X X

11

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018

TeSSLa by Example

a2 X 4 X 6
bl 1 X X 5
¢l 3 X 5 X X 1

Convent, Hungerecker, Scheffel, Schmitz, Thoma

SBMF 2018

TeSSLa by Example

a2 X 4 X 6
b| 1 X 3 X 5
e[3 X 5 X 7 X 1

def ¢ := eventCount (x)

Convent, Hungerecker, Scheffel, Schmitz, Thoma

SBMF 2018

TeSSLa by Example

4 X
b| 1 X 3 X 5
X X

11

@ X X—& X X X

T X X

el 0 X 1 X2XsXoxtxXox 1 X

def ¢ := eventCount (x, reset = r)

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018

Syntax

e ::=nil | unit | z |
lift(f)(e,...,e) |
time(e) |
last(e, e) |

delay(e, e)

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018

Core Operators: Lift

» How to do point-wise operations on streams?

def f[A, B] (a: Option[A], b: Option[B]): Option[A] :=
if (isDefined (b)) then a else None

e —0O—2—063—®
VR
lift(f)(z,y) ———2)—@)———

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018

Derived Operators: Signal Lift of Addition

» Signal lift allows to lift operations on arbitrary data types to streams.
» E.g. the addition on integer numbers can be lifted to streams of integers.

4
bl 1 X 3
X

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018

Derived Operators: Signal Lift of Negation

» Signal lift allows to lift operations on arbitrary data types to streams.

» E.g. the negation of booleans can be lifted to a stream of booleans.

a| true X false X true
ﬁa‘ false >< true >< false

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018

Derived Operators: Signal Lift of If-Then-Else

» Signal lift allows to lift operations on arbitrary data types to streams.

> E.g. the ternary if-then-else function can be lifted to
a stream of booleans and two streams of identical type.

al 1 X 3
b 2 X 4
a>b| false X true X false
ifa>bthenaelseb’ 2 >< 3 >< 4

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018

Derived Operators: Filter

» Process streams in an event-oriented fashion

» Filter the events of one stream based on a second boolean stream
interpreted as piecewise constant signal.

1—O0—O00—-006G—

a| true X false X true

filter(z, a) »—@ @—@—)

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 10

Derived Operators: Merge

» Process streams in an event-oriented fashion

» Merge combines two streams into one,
giving preference to the first stream when both streams contain identical
timestamps.

t—2)—@—
y——1)—03B)r—
merge(x,y) 2 o (1)

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 11

Core Operators: Last

> Needed to define properties over sequences of events.

» Last allows to refer to the values of events on one stream
that occurred strictly before the events on another stream

— D O-O—@
v — R—R—
last(z, y) | @—@—)

® X

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018

12

Core Operators: Time

» Provides access to the timestamps of events
» Produces events carrying their timestamps as data value

» Hence all operators for data values can be applied to timestamps.

PR

time(x) 0 @ 9
last(time(z), x) >—®—@—)
time(z) — last(time(z),) ————(2)—1)—

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 13

Core Operators: Delay

> Allows to create new timestamps

d
delay(d,) + ®—>

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018

14

Core Operators: Const and Nil

» The constant nil for the empty stream

» The operator const converting a value to a stream
starting with that value at timestamp 0.

Implicit Conversions

» Integer and Boolean constants
are converted to streams via const.

» Build-in operators on integers and Booleans
are lifted to streams via signal lift.

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 15

Recursive Equations in TeSSLa

» The last operator allows to write recursive equations

» The merge operation allows to initialize recursive equations with an
initial event from an other stream.

» Express aggregation operations like the sum over all values of a stream.

» Evaluation algorithm iterates progressing event streams until
fixed-point is reached.

z @ @ ®
last(s,) t @ @ @
s| 0 X 2 X 3 X 5
def s := merge(last(s, x) + x, 0)

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018

16

Recursive Equations in TeSSLa: How It Works

| (™)
z @ @©

last(s, x)
last(s, z) + z

0@

s = merge(last(s, z) + x,0)

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 17

Recursive Equations in TeSSLa: How It Works

| (™) (1)
T O—@

last(s,z) ————

last(s,z) + ¢ +——

0©

s = merge(last(s, z) + =, 0) @7

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018

Recursive Equations in TeSSLa: How It Works

| (1)
z @ @©

last(s, x) >—@
last(s,z) + ¢ +——
0©
s = merge(last(s, z) + =, 0) @7

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018

Recursive Equations in TeSSLa: How It Works

last(s, x) >—@
last(s, z) + z »—@
0©
s = merge(last(s, z) + =, 0)

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018

Recursive Equations in TeSSLa: How It Works

last(s,z) @
last(s,z) +x + 2
0©
s = merge(last(s, z) + x,0) @ @

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018

17

Recursive Equations in TeSSLa: How It Works

last(s,z) @ @
last(s,z) +x + 2
0©
s = merge(last(s, z) + x,0) @ @

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018

17

Recursive Equations in TeSSLa: How It Works

last(s,z) @ @
last(s,z) +x + 2 ©)
0©
s = merge(last(s, z) + x,0) @ @ @

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018

17

Recursive Equations in TeSSLa: How It Works

T

last(s,z)

®e®
OIS

last(s,z) + =

0©

s = merge(last(s, z) + =, 0) @

®
©

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018

17

Macros in TeSSLa: eventCount

Count the number of events on ‘values' .

def eventCount[A,B] (values: Events[A])
def count: Events[Int] := merge (
increment counter
last (count, values) + 1
; 0)
count

{

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018

18

Computabilitiy and Well-formed Specifications

> All specifications exhibt a unique least fixed-point
» Consequence of monotonic and continuous operators
» Computablity:
> In presence of delay, distances between events might converge
»> We can compute chain of pre-fixed-points, i.e. finite prefixes of output
streams
> Without delay, least fixed-point can always be reached
» One computation step per operator per progress step
> Well-formed fragement:
» Recursions guarded by last or delay
» Only value/delay may be directly recursive
» For non-well-formed specifications smalles fixed-point undesireable

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 19

Properties and Fragments

» Complete TeSSLa is equivalent to

» continuous and monotone and
» future independent stream transformations.

> TeSSLa without delay is equivalten to
» continuous and monotone and
> future independent and
> timestamp conservative stream transformations.
» Boolean fragement (inequations on time) is equivalent to finite state
transducers

» Timed Fragement (linear constraints on time) is equivalent to
deterministic timed transducers

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018

20

Implementations and Data Types

v

JVM based interpreter

v

Hardware-implemented interpreter
Synthesis to FPGA

v

v

TeSSLa is defined agnostically with respect
to any time or data domain.

v

Different data structures can be used
to represent time and data.

» Monitoring in hardware:
atomic data types, e.g. int or float.

v

Monitoring in software:
complex data structures like lists, trees and maps.

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018

21

Conclusion

» Using TeSSLa we can check

» event ordering constraints
> timing constraints
> complex event patterns

> TeSSLa can be used to aggregate data and compute statistical data

> Can express large classes of stream transformations

» Sparse and fine graned event streams

» Explicit controll over memory requirements

v

Relation to well-studied models (finite and timed automata)

v

Decidability results for corresponding fragements

There is a software interpreter (see tessla.io).
Very small core language (2-3 operators).
Open to many other applications

vvyyy

Suited for hardware-based implementations

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 22

