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Motivation: Monitoring Program Flow Trace

System	under	Observa�on
(ARM	Cortex-A9	/	Cortex-A53)

Tr
ac
e
Bu

ff
er
&
Co
nc
en
tr
at
or

Tr
ac
e	
Po

rtCPU	0

CPU	1

CPU n

PFT/ETM

PFT/ETM

PFT/ETM

PFT/ETM

STM/ITM

Per

Mem

Mem

CPU	2

Analyzer
(Binary)

TeSSLa	Compiler

C	Compiler

Trace	Preprocessing
and	Reconstruc�on

Trace	Analysis
Monitoring

Monitoring

Monitoring	Hardware

Events
Post	Processing

ReportEvents Events

Specifica�onC	Code

Binary

Frontend

Ob
je
ct	
Co
de

De
bu
g	
Sy
m
bo
ls

Observa�on
Configura�on

Monitor
Configura�on

Observa�on
Specifica�on

Monitor
Specifica�on

Meta	Info
rma�on

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 1



Stream Processing: Technical Prerequisites

I Multi-core CPUs generate large amounts of trace data.
=⇒ Perform monitoring in hardware.

I FPGAs have limited amount of memory.
=⇒ Explicit memory usage. Constant memory usage per operator.

I Properties and analyses might become very complex.
=⇒ Combined monitoring on hardware and in software.

I Timing is crucial in embedded and cyber-physical systems.
=⇒ Support time as first-class citizen.

I Properties and analyses might require data.
=⇒ Support analyses and aggregation of data values.
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TeSSLa Design Goals

I Declarative style: Specification rather than implementation

I Modularity: Allowing abstractions based on few primitives

I Time as first-class citizen

I Abstractions for both events and signals

I Recursion to reason about past

I Implementable with limited memory

I Handle both sparse and fine grained event streams simultaniously
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TeSSLa by Example

a 2 4 6

b 1 3 5

c 3 5 7 11
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TeSSLa by Example

a 2 4 6

b 1 3 5

c 3 5 7 11

def c := a + b

x

c 0 1 2 3 4 5 6

r

c 0 1 2 3 0 1 0 1 2
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TeSSLa by Example

a 2 4 6

b 1 3 5

c 3 5 7 11

def c := a + b

x

c 0 1 2 3 4 5 6

r

c 0 1 2 3 0 1 0 1 2

def c := eventCount(x)
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TeSSLa by Example

a 2 4 6

b 1 3 5

c 3 5 7 11

def c := a + b

x

c 0 1 2 3 4 5 6

r

c 0 1 2 3 0 1 0 1 2

def c := eventCount(x, reset = r)
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Syntax

e ::=nil | unit | x |

lift(f)(e, . . . , e) |

time(e) |

last(e, e) |

delay(e, e)
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Core Operators: Lift

I How to do point-wise operations on streams?

def f[A, B](a: Option[A], b: Option[B]): Option[A] :=
if(isDefined(b)) then a else None

1 2 3 4x

y

2 3lift(f)(x, y)
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Derived Operators: Signal Lift of Addition

I Signal lift allows to lift operations on arbitrary data types to streams.
I E.g. the addition on integer numbers can be lifted to streams of integers.

a 2 4

b 1 3

a + b 3 5 7
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Derived Operators: Signal Lift of Negation

I Signal lift allows to lift operations on arbitrary data types to streams.
I E.g. the negation of booleans can be lifted to a stream of booleans.

a true false true

¬a false true false
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Derived Operators: Signal Lift of If-Then-Else

I Signal lift allows to lift operations on arbitrary data types to streams.
I E.g. the ternary if-then-else function can be lifted to

a stream of booleans and two streams of identical type.

a 1 3

b 2 4

a > b false true false

if a > b then a else b 2 3 4
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Derived Operators: Filter

I Process streams in an event-oriented fashion
I Filter the events of one stream based on a second boolean stream

interpreted as piecewise constant signal.

1 2 3 4 5x

a true false true

1 4 5filter(x, a)
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Derived Operators: Merge

I Process streams in an event-oriented fashion
I Merge combines two streams into one,

giving preference to the first stream when both streams contain identical
timestamps.

2 4x

1 3y

2 1 4merge(x, y)

Convent, Hungerecker, Scheffel, Schmitz, Thoma SBMF 2018 11



Core Operators: Last

I Needed to define properties over sequences of events.
I Last allows to refer to the values of events on one stream

that occurred strictly before the events on another stream

1 2 3 4x

y

1 3 3last(x, y)
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Core Operators: Time

I Provides access to the timestamps of events
I Produces events carrying their timestamps as data value
I Hence all operators for data values can be applied to timestamps.

1 3 4
x

1 3 4time(x)

1 3last(time(x), x)

2 1time(x)− last(time(x), x)
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Core Operators: Delay

I Allows to create new timestamps

4 2 3d

r

delay(d, r)
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Core Operators: Const and Nil

I The constant nil for the empty stream
I The operator const converting a value to a stream

starting with that value at timestamp 0.

Implicit Conversions
I Integer and Boolean constants

are converted to streams via const.
I Build-in operators on integers and Booleans

are lifted to streams via signal lift.
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Recursive Equations in TeSSLa

I The last operator allows to write recursive equations
I The merge operation allows to initialize recursive equations with an

initial event from an other stream.
I Express aggregation operations like the sum over all values of a stream.
I Evaluation algorithm iterates progressing event streams until

fixed-point is reached.

2 1 3x

0 2 3last(s, x)

s 0 2 3 5

def s := merge(last(s, x) + x, 0)
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Recursive Equations in TeSSLa: How It Works

2 1x

0 2

last(s, x)

2 3

last(s, x) + x

00

0 2 3

s = merge(last(s, x) + x, 0)
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Macros in TeSSLa: eventCount

# Count the number of events on `values`.
def eventCount[A,B](values: Events[A]) := {

def count: Events[Int] := merge(
# increment counter
last(count, values) + 1

, 0)
count

}
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Computabilitiy and Well-formed Specifications

I All specifications exhibt a unique least fixed-point
I Consequence of monotonic and continuous operators

I Computablity:
I In presence of delay, distances between events might converge
I We can compute chain of pre-fixed-points, i.e. finite prefixes of output

streams
I Without delay, least fixed-point can always be reached
I One computation step per operator per progress step

I Well-formed fragement:
I Recursions guarded by last or delay
I Only value/delay may be directly recursive
I For non-well-formed specifications smalles fixed-point undesireable
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Properties and Fragments

I Complete TeSSLa is equivalent to
I continuous and monotone and
I future independent stream transformations.

I TeSSLa without delay is equivalten to
I continuous and monotone and
I future independent and
I timestamp conservative stream transformations.

I Boolean fragement (inequations on time) is equivalent to finite state
transducers

I Timed Fragement (linear constraints on time) is equivalent to
deterministic timed transducers
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Implementations and Data Types

I JVM based interpreter
I Hardware-implemented interpreter
I Synthesis to FPGA

I TeSSLa is defined agnostically with respect
to any time or data domain.

I Different data structures can be used
to represent time and data.

I Monitoring in hardware:
atomic data types, e.g. int or float.

I Monitoring in software:
complex data structures like lists, trees and maps.
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Conclusion

I Using TeSSLa we can check
I event ordering constraints
I timing constraints
I complex event patterns

I TeSSLa can be used to aggregate data and compute statistical data
I Can express large classes of stream transformations

I Sparse and fine graned event streams
I Explicit controll over memory requirements

I Relation to well-studied models (finite and timed automata)
I Decidability results for corresponding fragements

I There is a software interpreter (see tessla.io).
I Very small core language (2-3 operators).
I Open to many other applications
I Suited for hardware-based implementations
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