
TeSSLa – An Ecosystem For Runtime Verification

Hannes Kallwies1 Martin Leucker1 Malte Schmitz1 Albert Schulz2

Daniel Thoma1 Alexander Weiss2

1 Institute for Software Engineering and Programming Languages,
University of Lübeck, Lübeck, Germany

2 Accemic Technologies GmbH, Kiefersfelden, Germany

22nd International Conference on Runtime Verification, September 2022

Runtime Verification Process

3
Executable

Source
Code

Event

Declaration

2
Observer

Specification

Monitor

gEvents Verdict

Kallwies, Leucker, Schmitz, Schulz, Thoma, Weiss RV, September ’22 2

Runtime Verification Process

3
Executable

Source
Code

Event

Declaration

2
Observer

Specification

Monitor

gEvents Verdict

Kallwies, Leucker, Schmitz, Schulz, Thoma, Weiss RV, September ’22 2

TeSSLa language features

▶ Stream-based specification language with functional part

▶ Based on six basic stream operators (core operators)
(unit, nil, lift, last, delay, time)

▶ Macro system for definition of user defined stream operators
Lots of predefined macros in the stdlib

▶ Type system with support of generic types

▶ Annotation system for steering of the RV tool chain

Kallwies, Leucker, Schmitz, Schulz, Thoma, Weiss RV, September ’22 3

TeSSLa language features

▶ Stream-based specification language with functional part

▶ Based on six basic stream operators (core operators)
(unit, nil, lift, last, delay, time)

▶ Macro system for definition of user defined stream operators
Lots of predefined macros in the stdlib

▶ Type system with support of generic types

▶ Annotation system for steering of the RV tool chain

Kallwies, Leucker, Schmitz, Schulz, Thoma, Weiss RV, September ’22 3

TeSSLa language features

▶ Stream-based specification language with functional part

▶ Based on six basic stream operators (core operators)
(unit, nil, lift, last, delay, time)

▶ Macro system for definition of user defined stream operators
Lots of predefined macros in the stdlib

▶ Type system with support of generic types

▶ Annotation system for steering of the RV tool chain

Kallwies, Leucker, Schmitz, Schulz, Thoma, Weiss RV, September ’22 3

TeSSLa language features

▶ Stream-based specification language with functional part

▶ Based on six basic stream operators (core operators)
(unit, nil, lift, last, delay, time)

▶ Macro system for definition of user defined stream operators
Lots of predefined macros in the stdlib

▶ Type system with support of generic types

▶ Annotation system for steering of the RV tool chain

Kallwies, Leucker, Schmitz, Schulz, Thoma, Weiss RV, September ’22 3

TeSSLa language features

▶ Stream-based specification language with functional part

▶ Based on six basic stream operators (core operators)
(unit, nil, lift, last, delay, time)

▶ Macro system for definition of user defined stream operators
Lots of predefined macros in the stdlib

▶ Type system with support of generic types

▶ Annotation system for steering of the RV tool chain

Kallwies, Leucker, Schmitz, Schulz, Thoma, Weiss RV, September ’22 3

TeSSLa language features

▶ Stream-based specification language with functional part

▶ Based on six basic stream operators (core operators)
(unit, nil, lift, last, delay, time)

▶ Macro system for definition of user defined stream operators
Lots of predefined macros in the stdlib

▶ Type system with support of generic types

▶ Annotation system for steering of the RV tool chain

Kallwies, Leucker, Schmitz, Schulz, Thoma, Weiss RV, September ’22 3

TeSSLa - Example Specification

Inputs
@InstFunctionCall("read_brake_sensor")
in read_brake_sensor: Events[Unit]
@InstFunctionCall("activate_brakes")
in activate_brakes: Events[Unit]

Trace Processing
def latency = measureLatency(read_brake_sensor,

activate_brakes)
def error = latency > 4ms
def high = filter(latency, error) - 4ms
def is_critical = count(high) > 10
def critical = filter(high, is_critical)

Output
@VisDots out high
@VisEvents out critical

Macro
def measureLatency[A, B](a: Events[A],

b: Events[B]) =
time(b) - last(time(a), b)

Kallwies, Leucker, Schmitz, Schulz, Thoma, Weiss RV, September ’22 4

TeSSLa - Example Specification

Inputs
@InstFunctionCall("read_brake_sensor")
in read_brake_sensor: Events[Unit]
@InstFunctionCall("activate_brakes")
in activate_brakes: Events[Unit]

Trace Processing
def latency = measureLatency(read_brake_sensor,

activate_brakes)
def error = latency > 4ms
def high = filter(latency, error) - 4ms
def is_critical = count(high) > 10
def critical = filter(high, is_critical)

Output
@VisDots out high
@VisEvents out critical

Macro
def measureLatency[A, B](a: Events[A],

b: Events[B]) =
time(b) - last(time(a), b)

Input decl.
&

annotations

Kallwies, Leucker, Schmitz, Schulz, Thoma, Weiss RV, September ’22 4

TeSSLa - Example Specification

Inputs
@InstFunctionCall("read_brake_sensor")
in read_brake_sensor: Events[Unit]
@InstFunctionCall("activate_brakes")
in activate_brakes: Events[Unit]

Trace Processing
def latency = measureLatency(read_brake_sensor,

activate_brakes)
def error = latency > 4ms
def high = filter(latency, error) - 4ms
def is_critical = count(high) > 10
def critical = filter(high, is_critical)

Output
@VisDots out high
@VisEvents out critical

Macro
def measureLatency[A, B](a: Events[A],

b: Events[B]) =
time(b) - last(time(a), b)

Input decl.
&

annotations

Monitoring
property

Kallwies, Leucker, Schmitz, Schulz, Thoma, Weiss RV, September ’22 4

TeSSLa - Example Specification

Inputs
@InstFunctionCall("read_brake_sensor")
in read_brake_sensor: Events[Unit]
@InstFunctionCall("activate_brakes")
in activate_brakes: Events[Unit]

Trace Processing
def latency = measureLatency(read_brake_sensor,

activate_brakes)
def error = latency > 4ms
def high = filter(latency, error) - 4ms
def is_critical = count(high) > 10
def critical = filter(high, is_critical)

Output
@VisDots out high
@VisEvents out critical

Macro
def measureLatency[A, B](a: Events[A],

b: Events[B]) =
time(b) - last(time(a), b)

Input decl.
&

annotations

Monitoring
property

Output decl.
&

annotations

Kallwies, Leucker, Schmitz, Schulz, Thoma, Weiss RV, September ’22 4

TeSSLa - Example Specification

Inputs
@InstFunctionCall("read_brake_sensor")
in read_brake_sensor: Events[Unit]
@InstFunctionCall("activate_brakes")
in activate_brakes: Events[Unit]

Trace Processing
def latency = measureLatency(read_brake_sensor,

activate_brakes)
def error = latency > 4ms
def high = filter(latency, error) - 4ms
def is_critical = count(high) > 10
def critical = filter(high, is_critical)

Output
@VisDots out high
@VisEvents out critical

Macro
def measureLatency[A, B](a: Events[A],

b: Events[B]) =
time(b) - last(time(a), b)

Input decl.
&

annotations

Monitoring
property

Output decl.
&

annotations

Macro
definitions

Kallwies, Leucker, Schmitz, Schulz, Thoma, Weiss RV, September ’22 4

TeSSLa Backends

TeSSLa Language

TeSSLa Core

FPGA CPU

OS

JVM

EPUs

Compiler Frontend

Rust

Sc
al

a

Synthesis
(develop.)

EPU
Compiler

Interpreter
Compiler

Kallwies, Leucker, Schmitz, Schulz, Thoma, Weiss RV, September ’22 5

Observation / Instrumentation

▶ Instrumenter for C code integrated in compiler
▶ Accemic’s CEDARtools for non-intrusive hardware monitoring
▶ Connection to other instrumentation tools via generic annotation system

Processor

3
Executable

2
Instrumentation

Compiled
Monitor

g

Probes

Interference

Events Verdict

Processor CEDAR Hardware

3
Executable

ETU 2
Trace

Reconstruction

Monitor
on EPUs

g
Probes Events Verdict

Kallwies, Leucker, Schmitz, Schulz, Thoma, Weiss RV, September ’22 6

Supporting: Web IDE

Kallwies, Leucker, Schmitz, Schulz, Thoma, Weiss RV, September ’22 7

Supporting: Online Documentation

Kallwies, Leucker, Schmitz, Schulz, Thoma, Weiss RV, September ’22 8

TeSSLa ecosystem

▶ User Libraries
Macro system allows definition of application-specific libraries
E.g. AUTOSAR Timex, Past LTL libraries...

▶ Tutorials
Extensive tutorials about the usage of the TeSSLa language and tools.

▶ Open-Source availability
Free availability of most parts of the tool chain.
Community-driven project.

Kallwies, Leucker, Schmitz, Schulz, Thoma, Weiss RV, September ’22 9

TeSSLa ecosystem

▶ User Libraries
Macro system allows definition of application-specific libraries
E.g. AUTOSAR Timex, Past LTL libraries...

▶ Tutorials
Extensive tutorials about the usage of the TeSSLa language and tools.

▶ Open-Source availability
Free availability of most parts of the tool chain.
Community-driven project.

Kallwies, Leucker, Schmitz, Schulz, Thoma, Weiss RV, September ’22 9

TeSSLa ecosystem

▶ User Libraries
Macro system allows definition of application-specific libraries
E.g. AUTOSAR Timex, Past LTL libraries...

▶ Tutorials
Extensive tutorials about the usage of the TeSSLa language and tools.

▶ Open-Source availability
Free availability of most parts of the tool chain.
Community-driven project.

Kallwies, Leucker, Schmitz, Schulz, Thoma, Weiss RV, September ’22 9

Future plans

The development of TeSSLa is still in progress...

▶ Improvement of the TeSSLa language and compilers

▶ Extension of the tool chain: Further backends, integration with other tools

▶ Development of further libraries for specific RV applications

Kallwies, Leucker, Schmitz, Schulz, Thoma, Weiss RV, September ’22 10

Future plans

The development of TeSSLa is still in progress...

▶ Improvement of the TeSSLa language and compilers

▶ Extension of the tool chain: Further backends, integration with other tools

▶ Development of further libraries for specific RV applications

Kallwies, Leucker, Schmitz, Schulz, Thoma, Weiss RV, September ’22 10

Future plans

The development of TeSSLa is still in progress...

▶ Improvement of the TeSSLa language and compilers

▶ Extension of the tool chain: Further backends, integration with other tools

▶ Development of further libraries for specific RV applications

Kallwies, Leucker, Schmitz, Schulz, Thoma, Weiss RV, September ’22 10

Future plans

The development of TeSSLa is still in progress...

▶ Improvement of the TeSSLa language and compilers

▶ Extension of the tool chain: Further backends, integration with other tools

▶ Development of further libraries for specific RV applications

Kallwies, Leucker, Schmitz, Schulz, Thoma, Weiss RV, September ’22 10

Find out more

TeSSLa Website:
https://www.tessla.io/

TeSSLa Playground:
https://play.tessla.io/

TeSSLa Sourcecode:
https://git.tessla.io/

Contact:
info@tessla.io

Kallwies, Leucker, Schmitz, Schulz, Thoma, Weiss RV, September ’22 11

