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TeSSLa language features

▶ Stream-based specification language with functional part

▶ Based on six basic stream operators (core operators)
(unit, nil, lift, last, delay, time)

▶ Macro system for definition of user defined stream operators
Lots of predefined macros in the stdlib

▶ Type system with support of generic types

▶ Annotation system for steering of the RV tool chain
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TeSSLa - Example Specification

# Inputs
@InstFunctionCall("read_brake_sensor")
in read_brake_sensor: Events[Unit]
@InstFunctionCall("activate_brakes")
in activate_brakes: Events[Unit]

# Trace Processing
def latency = measureLatency(read_brake_sensor,

activate_brakes)
def error = latency > 4ms
def high = filter(latency, error) - 4ms
def is_critical = count(high) > 10
def critical = filter(high, is_critical)

# Output
@VisDots out high
@VisEvents out critical

# Macro
def measureLatency[A, B](a: Events[A],

b: Events[B]) =
time(b) - last(time(a), b)
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TeSSLa Backends
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Observation / Instrumentation

▶ Instrumenter for C code integrated in compiler
▶ Accemic’s CEDARtools for non-intrusive hardware monitoring
▶ Connection to other instrumentation tools via generic annotation system
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Supporting: Web IDE
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Supporting: Online Documentation
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TeSSLa ecosystem

▶ User Libraries
Macro system allows definition of application-specific libraries
E.g. AUTOSAR Timex, Past LTL libraries...

▶ Tutorials
Extensive tutorials about the usage of the TeSSLa language and tools.

▶ Open-Source availability
Free availability of most parts of the tool chain.
Community-driven project.
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Future plans

The development of TeSSLa is still in progress...

▶ Improvement of the TeSSLa language and compilers

▶ Extension of the tool chain: Further backends, integration with other tools

▶ Development of further libraries for specific RV applications
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Find out more

TeSSLa Website:
https://www.tessla.io/

TeSSLa Playground:
https://play.tessla.io/

TeSSLa Sourcecode:
https://git.tessla.io/

Contact:
info@tessla.io

Kallwies, Leucker, Schmitz, Schulz, Thoma, Weiss RV, September ’22 11


