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Traditional (Stream) Runtime Verification
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In this paper: Extension to robot systems
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TeSSLa is a general purpose Stream-based Specification language:

Every monotonous, continuous and future-independent stream
transformation function f can be specified in TeSSLa

Possible fields of application:
▶ Online Monitoring
▶ Logfile Analysis
▶ Event pattern generation
▶ Analysis of the specification
▶ ...
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Basic concept: Combining streams

Correctness property: Speed is between 2 and 8.
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in speed: Events[Int]

def low = (speed < 2)
def high = (speed > 8)
def unsafe = low || high

out unsafe
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Basic concept: Synchronous streams

Correctness property: Speed is between 2 and 8.
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in speed: Events[Int]

def low = (speed < 2)
def high = (speed > 8)
def unsafe = low || high

out unsafe
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Basic concept: Asynchronous streams

Correctness property: Speed is between 2 and 8, one second after robot
intends driving a curve.

speed 6 1 9

low ff tt ff
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in speed: Events[Int]
in curve: Events[Unit]

def low = (speed < 2)
def high = (speed > 8)
def unsafe = on(low || high, delay(1s, curve))

out unsafe
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▶ Abstractions for both events and signals

▶ Description of asynchronous streams

▶ Time as first-class citizen

▶ Useful for description of Cyber Physical Systems
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TeSSLa: Language and features

Language based on five core operations plus

▶ Type system
▶ Macro system
▶ Module system
▶ Standard library and several user libraries
▶ Meta Data/annotation concept
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TeSSLa core operations: Lift

▶ Lift applies a function to the current events on a certain number of
streams

▶ e.g. adds two numerical event values

x

y

lift(f)(x, y)

f f f
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TeSSLa core operations: Delay

▶ Delay creates a new event some time after a reset event
▶ Possibility to create output events at timestamps without input events

2 5 7 12 15 18
reset

5 5 5 5 5timeout

delay(timeout, reset)
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TeSSLa core operations: Last

▶ Last allows to access the values of events on one stream that occurred
strictly before the events on another stream

▶ Important for accessing streams with signal semantics

1 2 3 4x

y

1 3 3last(x, y)
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TeSSLa core operations: Time

▶ Time provides access to the timestamps of events
▶ Produces events carrying their timestamps as data value
▶ Hence all operators for data values can be applied to timestamps.

1 3 4
x

1 3 4time(x)

1 3last(time(x), x)

2 1time(x) − last(time(x), x)
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Recursive Equations in TeSSLa

s = lift(merge)(last(s, x) + x, 0)

2 1 3x

0 2 3last(s, x)

0 2 3 6s
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Macro-System

▶ Possibility to extend minimal language core by arbitrary functions

Macro Definition Fold

def fo ld [ T , R ] ( stream : Events [ T ] , i n i t : R ,
f : ( Events [R] , Events [ T ] ) => Events [R ] ) = r e s u l t

where
{

def r e s u l t : Events [R] = merge ( f ( l a s t ( r e s u l t , stream ) ,
stream ) , i n i t )

}

Usage of Fold

def y = fo ld ( x , 0 , ( c : Int , x : I n t ) => c+x )
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Module System

Modules

module myModule {
module mySubmodule {

def myCount [A] ( a : Events [A] ) := c where {
def c : Events [ I n t ] := merge ( l a s t ( c , a ) + 1 , 0 )

}
}

}

in x : Events [ Unit ]
def y := myModule . mySubmodule . myCount ( x )
out y

⇒ Possibility to create TeSSLa libraries.
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Standard & User Libraries

Standard Library Defines a high number of macros to make the usage of
TeSSLa comfortable

▶ Basic operations: Merge, Signal Lift, Const, Filter, ...

▶ Aggregation functions: Minimum, Maximum, Fold, Reduce, ...

▶ Common datastrucutre functions: Set.contains,
Map.getOrElse, ...

▶ Application specific functions: Burst-Pattern recognition,
Event-Chain recognition, ...

User Libraries e.g. for

▶ special logics
▶ AUTOSAR Timex extension
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TeSSLa Language: Typesystem

▶ Built-in basic types can be extended by user-defined types
▶ Supports externally defined nominal types
▶ Record types
▶ Generics

Supported basic types:
▶ Unit
▶ Int
▶ Float
▶ Boolean
▶ String

Supported complex datastructures:
▶ Lists
▶ Sets
▶ Maps
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Complex datastructures

Complex datastructures

in x : Events [ I n t ]

def seen : Events [ Set [ I n t ] ] := fo ld ( x , Se t . empty [ I n t ] , Se t . add )

out Set . conta ins ( l a s t ( seen , x ) , x ) as old

1 2 1 3x

{1} {1,2} {1,2} {1,2,3}
seen

ff ff tt ffold
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Meta Data/Annotations
Possibility to pass event declaration to connected tools:

▶ @InstFunctionCall(func\_name)

▶ @VisSignal

▶ @RosSubscription(topic, datatype, qos_profile)

▶ @RosPublisher(topic, datatype, qos_profile)

▶ ...

@RosSubscription ( "/sensor1 " , " i n t 6 4 " , " 10 " )
in x : Events [ I n t ]

[ . . . ]

@RosPublisher ( "/a c t o r 1 " , " i n t 6 4 " , " 10 " ) @VisSignal
out y
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TeSSLa-ROS-Integration

Idea: Use TeSSLa to monitor robot systems

ROS (Robot Operating System):

Basic concept:

▶ Tasks of a robot (motor control, image recognition etc.) are running
parallel in nodes

▶ Communication between nodes via publisher/subscriber pattern

Node
Sub

Pub

Topic

Topic

Node Pub

Node
Sub

Sub
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TeSSLa-ROS-Integration: Architecture

Idea:

▶ Use TeSSLa-to-Rust compilation to generate TeSSLa monitor from
specification

▶ Run monitor in separate node for shielding of safety-critical part of the
system

▶ Connect monitor automatically to other nodes via annotations

▶ @RosSubscription(topic, datatype, qos_profile)

▶ @RosPublisher(topic, datatype, qos_profile)
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TeSSLa-ROS-Integration: Usage Example

▶ Robot driving around with distance sensor
▶ Must stop temporarily whenever something is too close
▶ Must stop permanently if something was close several times in short

period of time
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TeSSLa-ROS-Integration: Usage Example

Example specification

include "TesslaROSBridge.tessla"

def RED = 0; def YELLOW = 1; def GREEN = 2

module MyModule {
def cntTimeReset[A](cnt: Events[A], resetTime: Int) =

resetCount(cnt, delay(const(resetTime, cnt), cnt))
}

@RosSubscription("/distance_sensor", "int64", "10")
in distance: Events[Int]

def tooClose = default(distance < 20, false)
def tooManyErrors = cntTimeReset(rising(tooClose), 30s) > 5
def stop = tooClose || LTL.once(tooManyErrors)
def ledCode = if tooClose then RED else if stop then YELLOW else GREEN

@RosPublisher("/emergency_stop", "bool", "10") @VisBool
out stop

@RosPublisher("/status_led", "int64", "10") @VisSignal
out ledCode

@VisSignal
out tooClose
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TeSSLa-ROS-Integration: Usage Example
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Recap & Future Work

▶ TeSSLa: Stream Runtime Verification language with several features
⇒ well suited for specification of CPS

▶ ROS: Modular, highly common operating system for robots

▶ Combined both approaches for user-friendly shielding of robotic
systems

▶ Small case study to evaluate convenience of approach

▶ Try extended RV approaches with robotic domain (e.g. uncertainty)

▶ TeSSLa macros specially suited for robotic context

▶ Use TeSSLa for control tasks of the monitor
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Find out more

TeSSLa Website:
www.tessla.io

www.tessla.io/blog/ros-bridge

TeSSLa Playground:
play.tessla.io

TeSSLa Sourcecode:
git.tessla.io
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