
TOOL PAPER: Tessla-ROS-Bridge
Runtime Verification of Robotic Systems

Marian Johannes Begemann Hannes Kallwies Martin Leucker
Malte Schmitz

Institute for Software Engineering and Programming Languages,
University of Lübeck, Germany

20th International Colloquium on Theoretical Aspects of Computing, December 2023

Traditional (Stream) Runtime Verification

3
Executable

<
Source Code

�
Event Declaration

2
Event
Generator

φ
Specification

Mφ

Monitor

✔
✘

Verdict

e4 e3 e2

Events

e1

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 2

In this paper: Extension to robot systems

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 2

TeSSLa is a general purpose Stream-based Specification language:

Every monotonous, continuous and future-independent stream
transformation function f can be specified in TeSSLa

Possible fields of application:
▶ Online Monitoring
▶ Logfile Analysis
▶ Event pattern generation
▶ Analysis of the specification
▶ ...

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 3

Basic concept: Combining streams

Correctness property: Speed is between 2 and 8.

6 1 9

ff tt ff

ff ff tt

ff tt tt

speed

low

high

unsafe

in speed: Events[Int]

def low = (speed < 2)
def high = (speed > 8)
def unsafe = low || high

out unsafe

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 4

Basic concept: Combining streams

Correctness property: Speed is between 2 and 8.

6 1 9

ff tt ff

ff ff tt

ff tt tt

speed

low

high

unsafe

in speed: Events[Int]

def low = (speed < 2)
def high = (speed > 8)
def unsafe = low || high

out unsafe

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 4

Basic concept: Synchronous streams

Correctness property: Speed is between 2 and 8.

6 1 9

ff tt ff

ff ff tt

ff tt tt

speed

low

high

unsafe

in speed: Events[Int]

def low = (speed < 2)
def high = (speed > 8)
def unsafe = low || high

out unsafe

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 4

Basic concept: Asynchronous streams

Correctness property: Speed is between 2 and 8, one second after robot
intends driving a curve.

speed 6 1 9

low ff tt ff

high ff ff tt

tt tt

curve

unsafe

1s 1s

in speed: Events[Int]
in curve: Events[Unit]

def low = (speed < 2)
def high = (speed > 8)
def unsafe = on(low || high, delay(1s, curve))

out unsafe

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 4

Basic concept: Asynchronous streams

Correctness property: Speed is between 2 and 8, one second after robot
intends driving a curve.

speed 6 1 9

low ff tt ff

high ff ff tt

tt tt

curve

unsafe

1s 1s

in speed: Events[Int]
in curve: Events[Unit]

def low = (speed < 2)
def high = (speed > 8)
def unsafe = on(low || high, delay(1s, curve))

out unsafe

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 4

▶ Abstractions for both events and signals

▶ Description of asynchronous streams

▶ Time as first-class citizen

▶ Useful for description of Cyber Physical Systems

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 5

TeSSLa: Language and features

Language based on five core operations plus

▶ Type system
▶ Macro system
▶ Module system
▶ Standard library and several user libraries
▶ Meta Data/annotation concept

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 6

TeSSLa core operations: Lift

▶ Lift applies a function to the current events on a certain number of
streams

▶ e.g. adds two numerical event values

x

y

lift(f)(x, y)

f f f

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 7

TeSSLa core operations: Delay

▶ Delay creates a new event some time after a reset event
▶ Possibility to create output events at timestamps without input events

2 5 7 12 15 18
reset

5 5 5 5 5timeout

delay(timeout, reset)

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 8

TeSSLa core operations: Last

▶ Last allows to access the values of events on one stream that occurred
strictly before the events on another stream

▶ Important for accessing streams with signal semantics

1 2 3 4x

y

1 3 3last(x, y)

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 9

TeSSLa core operations: Time

▶ Time provides access to the timestamps of events
▶ Produces events carrying their timestamps as data value
▶ Hence all operators for data values can be applied to timestamps.

1 3 4
x

1 3 4time(x)

1 3last(time(x), x)

2 1time(x) − last(time(x), x)

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 10

Recursive Equations in TeSSLa

s = lift(merge)(last(s, x) + x, 0)

2 1 3x

0 2 3last(s, x)

0 2 3 6s

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 11

Macro-System

▶ Possibility to extend minimal language core by arbitrary functions

Macro Definition Fold

def fo ld [T , R] (stream : Events [T] , i n i t : R ,
f : (Events [R] , Events [T]) => Events [R]) = r e s u l t

where
{

def r e s u l t : Events [R] = merge (f (l a s t (r e s u l t , stream) ,
stream) , i n i t)

}

Usage of Fold

def y = fo ld (x , 0 , (c : Int , x : I n t) => c+x)

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 12

Module System

Modules

module myModule {
module mySubmodule {

def myCount [A] (a : Events [A]) := c where {
def c : Events [I n t] := merge (l a s t (c , a) + 1 , 0)

}
}

}

in x : Events [Unit]
def y := myModule . mySubmodule . myCount (x)
out y

⇒ Possibility to create TeSSLa libraries.

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 13

Module System

Modules

module myModule {
module mySubmodule {

def myCount [A] (a : Events [A]) := c where {
def c : Events [I n t] := merge (l a s t (c , a) + 1 , 0)

}
}

}

in x : Events [Unit]
def y := myModule . mySubmodule . myCount (x)
out y

⇒ Possibility to create TeSSLa libraries.

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 13

Standard & User Libraries

Standard Library Defines a high number of macros to make the usage of
TeSSLa comfortable

▶ Basic operations: Merge, Signal Lift, Const, Filter, ...

▶ Aggregation functions: Minimum, Maximum, Fold, Reduce, ...

▶ Common datastrucutre functions: Set.contains,
Map.getOrElse, ...

▶ Application specific functions: Burst-Pattern recognition,
Event-Chain recognition, ...

User Libraries e.g. for

▶ special logics
▶ AUTOSAR Timex extension

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 14

Standard & User Libraries

Standard Library Defines a high number of macros to make the usage of
TeSSLa comfortable

▶ Basic operations: Merge, Signal Lift, Const, Filter, ...

▶ Aggregation functions: Minimum, Maximum, Fold, Reduce, ...

▶ Common datastrucutre functions: Set.contains,
Map.getOrElse, ...

▶ Application specific functions: Burst-Pattern recognition,
Event-Chain recognition, ...

User Libraries e.g. for

▶ special logics
▶ AUTOSAR Timex extension

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 14

TeSSLa Language: Typesystem

▶ Built-in basic types can be extended by user-defined types
▶ Supports externally defined nominal types
▶ Record types
▶ Generics

Supported basic types:
▶ Unit
▶ Int
▶ Float
▶ Boolean
▶ String

Supported complex datastructures:
▶ Lists
▶ Sets
▶ Maps

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 15

Complex datastructures

Complex datastructures

in x : Events [I n t]

def seen : Events [Set [I n t]] := fo ld (x , Se t . empty [I n t] , Se t . add)

out Set . conta ins (l a s t (seen , x) , x) as old

1 2 1 3x

{1} {1,2} {1,2} {1,2,3}
seen

ff ff tt ffold

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 16

Meta Data/Annotations
Possibility to pass event declaration to connected tools:

▶ @InstFunctionCall(func_name)

▶ @VisSignal

▶ @RosSubscription(topic, datatype, qos_profile)

▶ @RosPublisher(topic, datatype, qos_profile)

▶ ...

@RosSubscription ("/sensor1 " , " i n t 6 4 " , " 10 ")
in x : Events [I n t]

[. . .]

@RosPublisher ("/a c t o r 1 " , " i n t 6 4 " , " 10 ") @VisSignal
out y

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 17

TeSSLa-ROS-Integration

Idea: Use TeSSLa to monitor robot systems

ROS (Robot Operating System):

Basic concept:

▶ Tasks of a robot (motor control, image recognition etc.) are running
parallel in nodes

▶ Communication between nodes via publisher/subscriber pattern

Node
Sub

Pub

Topic

Topic

Node Pub

Node
Sub

Sub

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 18

TeSSLa-ROS-Integration

Idea: Use TeSSLa to monitor robot systems

ROS (Robot Operating System):

Basic concept:

▶ Tasks of a robot (motor control, image recognition etc.) are running
parallel in nodes

▶ Communication between nodes via publisher/subscriber pattern

Node
Sub

Pub

Topic

Topic

Node Pub

Node
Sub

Sub

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 18

TeSSLa-ROS-Integration

Idea: Use TeSSLa to monitor robot systems

ROS (Robot Operating System):

Basic concept:
▶ Tasks of a robot (motor control, image recognition etc.) are running

parallel in nodes

▶ Communication between nodes via publisher/subscriber pattern

Node
Sub

Pub

Topic

Topic

Node Pub

Node
Sub

Sub

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 18

TeSSLa-ROS-Integration

Idea: Use TeSSLa to monitor robot systems

ROS (Robot Operating System):

Basic concept:
▶ Tasks of a robot (motor control, image recognition etc.) are running

parallel in nodes
▶ Communication between nodes via publisher/subscriber pattern

Node
Sub

Pub

Topic

Topic

Node Pub

Node
Sub

Sub

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 18

TeSSLa-ROS-Integration: Architecture

Idea:

▶ Use TeSSLa-to-Rust compilation to generate TeSSLa monitor from
specification

▶ Run monitor in separate node for shielding of safety-critical part of the
system

▶ Connect monitor automatically to other nodes via annotations

▶ @RosSubscription(topic, datatype, qos_profile)

▶ @RosPublisher(topic, datatype, qos_profile)

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 19

TeSSLa-ROS-Integration: Architecture

Idea:
▶ Use TeSSLa-to-Rust compilation to generate TeSSLa monitor from

specification

▶ Run monitor in separate node for shielding of safety-critical part of the
system

▶ Connect monitor automatically to other nodes via annotations

▶ @RosSubscription(topic, datatype, qos_profile)

▶ @RosPublisher(topic, datatype, qos_profile)

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 19

TeSSLa-ROS-Integration: Architecture

Idea:
▶ Use TeSSLa-to-Rust compilation to generate TeSSLa monitor from

specification
▶ Run monitor in separate node for shielding of safety-critical part of the

system

▶ Connect monitor automatically to other nodes via annotations

▶ @RosSubscription(topic, datatype, qos_profile)

▶ @RosPublisher(topic, datatype, qos_profile)

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 19

TeSSLa-ROS-Integration: Architecture

Idea:
▶ Use TeSSLa-to-Rust compilation to generate TeSSLa monitor from

specification
▶ Run monitor in separate node for shielding of safety-critical part of the

system
▶ Connect monitor automatically to other nodes via annotations

▶ @RosSubscription(topic, datatype, qos_profile)

▶ @RosPublisher(topic, datatype, qos_profile)

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 19

TeSSLa-ROS-Integration: Usage Example

▶ Robot driving around with distance sensor
▶ Must stop temporarily whenever something is too close
▶ Must stop permanently if something was close several times in short

period of time

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 20

TeSSLa-ROS-Integration: Usage Example

Example specification

include "TesslaROSBridge.tessla"

def RED = 0; def YELLOW = 1; def GREEN = 2

module MyModule {
def cntTimeReset[A](cnt: Events[A], resetTime: Int) =

resetCount(cnt, delay(const(resetTime, cnt), cnt))
}

@RosSubscription("/distance_sensor", "int64", "10")
in distance: Events[Int]

def tooClose = default(distance < 20, false)
def tooManyErrors = cntTimeReset(rising(tooClose), 30s) > 5
def stop = tooClose || LTL.once(tooManyErrors)
def ledCode = if tooClose then RED else if stop then YELLOW else GREEN

@RosPublisher("/emergency_stop", "bool", "10") @VisBool
out stop

@RosPublisher("/status_led", "int64", "10") @VisSignal
out ledCode

@VisSignal
out tooClose

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 21

TeSSLa-ROS-Integration: Usage Example

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 22

Recap & Future Work

▶ TeSSLa: Stream Runtime Verification language with several features
⇒ well suited for specification of CPS

▶ ROS: Modular, highly common operating system for robots

▶ Combined both approaches for user-friendly shielding of robotic
systems

▶ Small case study to evaluate convenience of approach

▶ Try extended RV approaches with robotic domain (e.g. uncertainty)

▶ TeSSLa macros specially suited for robotic context

▶ Use TeSSLa for control tasks of the monitor

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 23

Recap & Future Work

▶ TeSSLa: Stream Runtime Verification language with several features
⇒ well suited for specification of CPS

▶ ROS: Modular, highly common operating system for robots

▶ Combined both approaches for user-friendly shielding of robotic
systems

▶ Small case study to evaluate convenience of approach

▶ Try extended RV approaches with robotic domain (e.g. uncertainty)

▶ TeSSLa macros specially suited for robotic context

▶ Use TeSSLa for control tasks of the monitor

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 23

Recap & Future Work

▶ TeSSLa: Stream Runtime Verification language with several features
⇒ well suited for specification of CPS

▶ ROS: Modular, highly common operating system for robots

▶ Combined both approaches for user-friendly shielding of robotic
systems

▶ Small case study to evaluate convenience of approach

▶ Try extended RV approaches with robotic domain (e.g. uncertainty)

▶ TeSSLa macros specially suited for robotic context

▶ Use TeSSLa for control tasks of the monitor

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 23

Recap & Future Work

▶ TeSSLa: Stream Runtime Verification language with several features
⇒ well suited for specification of CPS

▶ ROS: Modular, highly common operating system for robots

▶ Combined both approaches for user-friendly shielding of robotic
systems

▶ Small case study to evaluate convenience of approach

▶ Try extended RV approaches with robotic domain (e.g. uncertainty)

▶ TeSSLa macros specially suited for robotic context

▶ Use TeSSLa for control tasks of the monitor

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 23

Recap & Future Work

▶ TeSSLa: Stream Runtime Verification language with several features
⇒ well suited for specification of CPS

▶ ROS: Modular, highly common operating system for robots

▶ Combined both approaches for user-friendly shielding of robotic
systems

▶ Small case study to evaluate convenience of approach

Future Work

▶ Try extended RV approaches with robotic domain (e.g. uncertainty)

▶ TeSSLa macros specially suited for robotic context

▶ Use TeSSLa for control tasks of the monitor

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 23

Recap & Future Work

▶ TeSSLa: Stream Runtime Verification language with several features
⇒ well suited for specification of CPS

▶ ROS: Modular, highly common operating system for robots

▶ Combined both approaches for user-friendly shielding of robotic
systems

▶ Small case study to evaluate convenience of approach

Future Work

▶ Try extended RV approaches with robotic domain (e.g. uncertainty)

▶ TeSSLa macros specially suited for robotic context

▶ Use TeSSLa for control tasks of the monitor

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 23

Recap & Future Work

▶ TeSSLa: Stream Runtime Verification language with several features
⇒ well suited for specification of CPS

▶ ROS: Modular, highly common operating system for robots

▶ Combined both approaches for user-friendly shielding of robotic
systems

▶ Small case study to evaluate convenience of approach

Future Work

▶ Try extended RV approaches with robotic domain (e.g. uncertainty)

▶ TeSSLa macros specially suited for robotic context

▶ Use TeSSLa for control tasks of the monitor

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 23

Find out more

TeSSLa Website:
www.tessla.io

www.tessla.io/blog/ros-bridge

TeSSLa Playground:
play.tessla.io

TeSSLa Sourcecode:
git.tessla.io

Begemann, Kallwies, Leucker, Schmitz ICTAC, December ’23 24

