

#### TeSSLa – An Introduction

Hannes Kallwies Martin Leucker Malte Schmitz Daniel Thoma

Institute for Software Engineering and Programming Languages, University of Lübeck, Germany

Formal Methods Porto, October 2019



- ▶ **Declarative** style: Specification rather than implementation
- ► Abstractions for both **events** and **signals**
- Useful for description of Cyber Physical Systems
- ▶ Modularity: Allowing abstractions based on few primitives
- ► Time as first-class citizen
- Recursion to reason about past
- ► Implementable with **limited memory**



TeSSLa is a general purpose Stream-based Specification language:

Every monotonous, continuous and future-independent stream transformation function f can be specified in TeSSLa

#### Possible fields of application:

- Online Monitoring
- ▶ Logfile Analysis
- Event pattern generation
- Analysis of the specification
- **.**..

#### **Runtime Verification with TeSSLa**



#### **Runtime Verification with TeSSLa**

```
@InstFunctionCall("lock")
                              in lock: Events [Unit]
int main() {
                         @InstFunctionCall("unlock")
  while (1) {
                              in unlock: Events [Unit]
    lock();
                         @InstFunctionCall("critical")
     critical();
                              in crit: Events [Unit]
     unlock();
                              out on(crit, count(lock) -
                                            count(unlock) == 1)
                              as verdict
            Event
            Generator
                                                     Verdict
                                          Monitor
Executable
                              Events
```

### **SRV: Combining streams**

**Correctness property:** Temperature is between 2 and 8.



## **SRV:** Combining streams

Correctness property: Temperature is between 2 and 8.



#### **SRV: Synchronous streams**

Correctness property: Temperature is between 2 and 8.



#### **SRV: Synchronous streams**

**Correctness property:** Temperature is between 2 and 8, when hatch is opened.



#### **SRV: Synchronous streams**

**Correctness property:** Temperature is between 2 and 8, when hatch is opened.



#### **SRV: Signal semantics**

**Correctness property:** Temperature is between 2 and 8, when hatch is opened.



### **SRV:** Asynchronous streams

**Correctness property:** Temperature is between 2 and 8, one second after hatch is opened.



# Spring example

$$m \cdot y'' = -D \cdot y - d \cdot y'$$





## Spring example

```
m \cdot y'' = -D \cdot y - d \cdot y' \iff y'' = \frac{-D}{m} \cdot y - \frac{d}{m} \cdot y'
```

#### Spring pendulum in TeSSLa

```
in sensor: Events [Float]
def m: Float = 0.2 \pm kg
def D: Float = 2.6 # N/m
def d: Float = 0.15 \# kg/s
def y''(t: Float, y: Float, y': Float): Float =
   -D / m * v - d / m * v'
def y_0 = 0.2 \# m
def y'_0 = 0.0 \# m/s
def approx: Events [(Float, Float)] =
    rk4(v'', v_0, v'_0)
def approxY: Events [Float] = approx._1
def alarm = |sensor-approxY| > e
```

# TeSSLa in comparison

Set of traces

Set of signals

$$\left\{a_{1}a_{2}a_{3}...,b_{1}b_{2}b_{3}...,..\right\}$$

$$\left\{ \begin{array}{ccc} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

LTL

MTL

Function from traces to

Function from streams to streams

Function from signals to signals

$$\left\{ \!\! \left( \! \begin{array}{c} a_1 \, a_2 \, a_3 \dots \\ b_1 \, b_2 \, b_3 \dots \\ c_1 \, c_2 \, c_3 \dots \end{array} \! \right. \! y_1 \, y_2 \, y_3 \dots \right) \!\! , \, \dots \! \right\}$$





LOLA.

traces

TeSSLa

TeSSLa + Diffeq.

### TeSSLa Language



#### TeSSLa Core: Nil and Unit

- ▶ *nil* is the empty stream
- unit produces exactly one unit-event with timestamp zero



#### **TeSSLa Core: Lift**

- Lift applies a function to the current events on a certain number of streams
- e.g. adds two numerical event values



#### **TeSSLa Core: Last**

- ► *Last* allows to access the values of events on one stream that occurred strictly before the events on another stream
- ▶ Important for accessing streams with signal semantics



# Signal-Lift (stdlib)

- ► Signal lift allows to lift operations on arbitrary data types to streams
- Useful for streams with signal semantics



## Signal-Lift (stdlib)

$$\operatorname{slift}(f)(x,y) = \operatorname{lift}(f')(x',y')$$

$$x' = \operatorname{merge}(x,\operatorname{last}(x,y))$$

$$y' = \operatorname{merge}(y,\operatorname{last}(y,x))$$

$$f'(a,b) = \begin{cases} f(a,b) & \text{if } a \neq \bot \land b \neq \bot \\ \bot & \text{else} \end{cases}$$

$$x \mapsto 3$$

$$y \mapsto 1$$

$$x' \mapsto 3$$

$$y' \mapsto 1$$

$$y$$

## **Recursive Equations in TeSSLa**

- ▶ The *last* operator allows to write *recursive equations*
- ► The *merge* operation allows to *initialize* recursive equations with an initial event from an other stream
- Express *aggregation* operations like the *sum* over all values of a stream
- Evaluation algorithm iterates progressing event streams until fixed-point is reached



$$def s := merge(last(s, x) + x, 0)$$

















#### **TeSSLa Core: Time**

- ► *Time* provides access to the timestamps of events
- ▶ Produces events carrying their timestamps as data value
- ▶ Hence all operators for data values can be applied to timestamps.



#### TeSSLa Core: Delay

- ▶ *Delay* creates a new event some time after a reset event
- Possibility to create output events at timestamps without input events



# TeSSLa Language: Typesystem

- ▶ Built-in basic types can be extended by user-defined types
- Supports externally defined nominal types
- ► Record types
- ► Generics

#### Supported basic types:

- ▶ Unit
- ► Int
- ► Float
- Boolean
- String

#### Supported complex datastructures:

- ► Lists
- ► Sets
- ► Maps

### **Complex datastructures**

#### Complex datastructures

```
in x: Events[Int]
def seen: Events[Set[Int]] :=
    merge(Set_add(last(seen, x), x), Set_empty[Int])
out Set_contains(last(seen, x), x) as old
```



#### **Macro-System**

 Possibility to extend minimal language core (nil, unit, time, delay, lift, last) by arbitrary functions

```
Usage of Fold
```

```
def y = fold(x, 0, (x: Events[Int], _: Events[Int]) \Rightarrow x+1)
```

### Standard-Library

Defines a high number of macros to make the usage of TeSSLa comfortable

- ▶ Basic operations: Merge, Signal Lift, Const, Filter, ...
- ► Aggregation functions: Minimum, Maximum, Fold, Reduce, Filter, ...
- Common datastrucutre functions: Set\_contains, Map\_getOrElse, ...
- ► Application specific functions: Burst-Pattern recognition, Event-Chain recognition, ...

# Standard-Library

#### **Burst Pattern**



#### Meta Data/Annotations

#### Possibility to pass Event declaration to connected tools:

- ▶ @InstFunctionReturn("func\_name")
- ► @InstFunctionCall("func\_name")
- @InstFunctionCallArg("func\_name", par\_pos)
- ▶ @LocalWrite(var\_name)
- ▶ @GlobalRead(var\_name)
- ▶ @ThreadId
- **...**

#### **Evaluation Approaches for TeSSLa**



#### **TeSSLa Evaluation**

```
in x: Events[Int]
def y = merge(last(y,x) + x, 0)
out y
```

## **TeSSLa Interpreter**

```
in x: Events[Int]
def y = merge(last(y,x) + x, 0)
out y
```



# **TeSSLa Compiler**

```
in x: Events[Int]
def y = merge(last(y,x) + x, 0)
out y
```



### **FPGA Synthesis**

```
in x: Events[Int]
def y = merge(last(y,x) + x, 0)
out y
```



### **EPU Configuration**

```
in x: Events[Int]
def y = merge(last(y,x) + x, 0)
out y
```

