UNIVERSITAT ZU LUBECK

K

LLoMey,

TeSSLa — An Introduction
Hannes Kallwies Martin Leucker Malte Schmitz

Institute for Software Engineering and Programming Languages,
University of Liibeck, Germany

Formal Methods Porto, October 2019

Daniel Thoma

TeSSLa

» Declarative style: Specification rather than implementation
> Abstractions for both events and signals

» Useful for description of Cyber Physical Systems

»> Modularity: Allowing abstractions based on few primitives
> Time as first-class citizen

» Recursion to reason about past

» Implementable with limited memory

Kallwies, Leucker, Schmitz, Thoma FM, October "19

TeSSLa

TeSSLa is a general purpose Stream-based Specification language:

Every monotonous, continuous and future-independent stream
transformation function f can be specified in TeSSLa

Possible fields of application:
» Online Monitoring
> Logfile Analysis
» Event pattern generation
> Analysis of the specification
> ..

Kallwies, Leucker, Schmitz, Thoma FM, October "19

Runtime Verification with TeSSLa

M B

Source Code Event Declaration Specification

an- E—a-@—o—u— Y,

Event

Executable ~ Generator Events Monitor ~ Verdict

Kallwies, Leucker, Schmitz, Thoma FM, October 19

Runtime Verification with TeSSLa

@InstFunctionCall ("lock ™)
in lock: Events[Unit]

int main() { @InstFunctionCall ("unlock")

WhIIOICek((? { in unlock: Events[Unit]
b ’1()‘ @InstFunctionCall (" critical ")
critica ! in crit: Events[Unit]
unlock ();
| } out on(crit, count(lock) —

count(unlock) == 1)
as verdict

;

an- E-—a-a—{u)— Y,

Event

Executable ~ Generator Events Monitor ~ Verdict

Kallwies, Leucker, Schmitz, Thoma FM, October 19

SRV: Combining streams

Correctness property: Temperature is between 2 and 8.

temperature | (6) O 9
low ——({) ® ®

P S S—
unsafe ———(f) ® ®

Kallwies, Leucker, Schmitz, Thoma FM, October "19

SRV: Combining streams

Correctness property: Temperature is between 2 and 8.

temperature | (6) (1) (9)

low ff tt ff
high ff \;\f)\ \;\t_t)\

unsafe | ()

Kallwies, Leucker, Schmitz, Thoma FM, October "19

SRV: Synchronous streams

Correctness property: Temperature is between 2 and 8.

temperature | (6)
I
I

D
(&
low ff tt ff
high ; \qf\)\ \qt\)\

unsafe | \fo/ \tTt/ \tTt/
|
|

Kallwies, Leucker, Schmitz, Thoma FM, October "19

SRV: Synchronous streams

Correctness property: Temperature is between 2 and 8, when hatch is

opened.
| L | L
temperature	(6) —(1) } —9)			
hatch ———O—"—0O—0O—				
!	! !			
low t @ 1 @ 1 i @				
high ——@——— @@				
unsafe | : @ : @ @ :
! [! [!
! ! ! ! !

Kallwies, Leucker, Schmitz, Thoma FM, October "19

SRV: Synchronous streams

Correctness property: Temperature is between 2 and 8, when hatch is

opened.
| L | L
temperature	(6) —(1) } —(9)			
hatch ————O——0O—0O—				
L	L			
low 1 1				
high	!			
unsafe | : (#)— &) (t—
! [! !
! ! ! !

Kallwies, Leucker, Schmitz, Thoma FM, October "19

SRV: Signal semantics

Correctness property: Temperature is between 2 and 8, when hatch is

opened.
temperature | 6 1 X 9
hatch t O O O
low | ff tt X ff
high | ff ff X tt
unsafe | @ @ @

Kallwies, Leucker, Schmitz, Thoma FM, October "19

SRV: Asynchronous streams

Correctness property: Temperature is between 2 and 8, one second after

hatch is opened.
temperature ‘ 6 1 >< 9
hatch t O O
low | ff tt X ff
high | ff ff Xt
unsafe @ @—>
— —
1s 1s

Kallwies, Leucker, Schmitz, Thoma FM, October "19

Spring example

1

m-y'=-D-y—d-y

Springiness, k

o 1\
o |-\ Ja\
0 [\ ~
= .\ I\ VARN P
= s 4_141%5_@
=T/
4 .

Kallwies, Leucker, Schmitz, Thoma FM, October 19

Spring example

1

3~
<

Spring pendulum in TeSSLa

in sensor: Events [Float]

def m: Float = 0.2 # kg
def D: Float = 2.6 # N/m
def d: Float = 0.15 # kg/s

def y''(t: Float, y: Float, y': Float): Float =
D/ m+y—-d/m=»y'

def y 0 = 0.2 #m
def y'_ 0 = 0.0 # m/s

def approx: Events [(Float, Float)] =
rkd(y" , y 0, y'_0)

def approxY: Events [Float] = approx._1
def alarm = |sensor—approxY!| > e

Kallwies, Leucker, Schmitz, Thoma FM, October 19

TeSSLa in comparison

Set of traces Set of streams Set of signals
{»«—x—»,}—x—)eo,...} {%ﬁ',’%ﬁ,}
{alagag...,b1b2b3... }
LTL MTL STL

Function from traces to Function from streams Function from signals

traces to streams to signals
ey P
414283 xyxgxg... e }—)e(—)é), R e
(G o)) (=524 (R ER)-4
LOLA TeSSLa TeSSLa + Diffeq.

Kallwies, Leucker, Schmitz, Thoma FM, October "19

TeSSLa Language

@ stdlib
Type Macro TeSSLa Core
a— R

TeSSLa Source

l) @ Metadata

Kallwies, Leucker, Schmitz, Thoma FM, October 19

TeSSLa Core: Nil and Unit

» nil is the empty stream

» wunit produces exactly one unit-event with timestamp zero

nil t

unit O

Kallwies, Leucker, Schmitz, Thoma FM, October "19

TeSSLa Core: Lift

» Lift applies a function to the current events on a certain number of
streams

> e.g. adds two numerical event values

o O O
y N
f f f
lift (f)(z, y) + L) L) ()

Kallwies, Leucker, Schmitz, Thoma FM, October "19

TeSSLa Core: Last

» Last allows to access the values of events on one stream that occurred
strictly before the events on another stream

» Important for accessing streams with signal semantics

z 4 @ 0B @

y—0 \o \ O

last(z, y) | @ @ @—)

Kallwies, Leucker, Schmitz, Thoma FM, October "19 11

Signal-Lift (stdlib)

» Signal lift allows to lift operations on arbitrary data types to streams

» Useful for streams with signal semantics

x| 1 3\ \ 4
\ \ \
y| 2 W\ NEEEN
f)f f

sift(N,y) | 3 X¥ 4 X¥e X¥7

Kallwies, Leucker, Schmitz, Thoma FM, October 19

12

Signal-Lift (stdlib)

slift(f)(z, y) = lift(f) (", ")
z’ = merge(z, last(z, y))
y' = merge(y, last(y,))

/ ,b) if b
- {108 5240042

slift(f)(x, y) | (4) (6) (7)

Kallwies, Leucker, Schmitz, Thoma FM, October "19

13

Recursive Equations in TeSSLa

» The last operator allows to write recursive equations

» The merge operation allows to initialize recursive equations with an
initial event from an other stream

» Express aggregation operations like the sum over all values of a stream

» Evaluation algorithm iterates progressing event streams until
fixed-point is reached

z @ @® ®
last(s,) t @ @ @
s 0 X 2 X 38 X 5
def s := merge(last (s, x) + x, 0)

Kallwies, Leucker, Schmitz, Thoma FM, October "19 14

Recursive Equations in TeSSLa: How It Works

| (™) 1)
T O—@

last(s, x)
last(s, z) + z

0@

s = merge(last(s, z) + x,0)

Kallwies, Leucker, Schmitz, Thoma FM, October 19 15

Recursive Equations in TeSSLa: How It Works

| (™) 1)
T O—@

last(s,z) ————

last(s,z) + ¢ +——

0©

s = merge(last(s, z) + =, 0) @7

Kallwies, Leucker, Schmitz, Thoma FM, October 19

Recursive Equations in TeSSLa: How It Works

| (™) 1)
T O—@

last(s, x) >—@
last(s,z) + ¢ +——
0©
s = merge(last(s, z) + =, 0) @7

Kallwies, Leucker, Schmitz, Thoma FM, October 19

Recursive Equations in TeSSLa: How It Works

last(s, x) >—@
last(s, z) + z »—@
0©
s = merge(last(s, z) + =, 0)

Kallwies, Leucker, Schmitz, Thoma FM, October 19

Recursive Equations in TeSSLa: How It Works

last(s,z) @
last(s,z) +x + 2
0©
s = merge(last(s, z) + x,0) @ @

Kallwies, Leucker, Schmitz, Thoma FM, October "19 15

Recursive Equations in TeSSLa: How It Works

last(s,z) @ @
last(s,z) +x + 2
0©
s = merge(last(s, z) + x,0) @ @

Kallwies, Leucker, Schmitz, Thoma FM, October "19

15

Recursive Equations in TeSSLa: How It Works

last(s,z) @ @
last(s,z) +x + 2 ©)
0©
s = merge(last(s, z) + x,0) @ @ @

Kallwies, Leucker, Schmitz, Thoma FM, October "19 15

Recursive Equations in TeSSLa: How It Works

T

last(s,z)

®e®
@®e

last(s,z) + = +

0©

s = merge(last(s, z) + =, 0) @

®
@

Kallwies, Leucker, Schmitz, Thoma FM, October "19

15

TeSSLa Core: Time

» Time provides access to the timestamps of events
» Produces events carrying their timestamps as data value

» Hence all operators for data values can be applied to timestamps.

1 3 4

r—O—O-0O—

time(x) (1) B)—4)
last(time(z),) ———— (1)—3)—
time(z) — last(time(x), x) >—@—@—)

Kallwies, Leucker, Schmitz, Thoma FM, October "19

16

TeSSLa Core: Delay

» Delay creates a new event some time after a reset event

> Possibility to create output events at timestamps without input events

2 5 7 12 15 18

timeout e e e e e
AN . [-

delay (timeout, reset) |

Q

Kallwies, Leucker, Schmitz, Thoma FM, October "19 17

TeSSLa Language: Typesystem

» Built-in basic types can be extended by user-defined types
» Supports externally defined nominal types
» Record types

» Generics
Supported basic types: Supported complex datastructures:
» Unit » Lists
> Int > Sets
> Float » Maps
> Boolean
» String

Kallwies, Leucker, Schmitz, Thoma FM, October "19

18

Complex datastructures

Complex datastructures

in x: Events[Int]

def seen: Events[Set[Int]] :=
merge (Set_add (last(seen, x), x), Set_empty[Int])

out Set_contains(last(seen, x), x) as old

x—D @ @ O
1 L2 2 123)

seen —()
old }—@

O
O
i

®
®
?

Kallwies, Leucker, Schmitz, Thoma FM, October 19

19

Macro-System

» Possibility to extend minimal language core (nil, unit, time, delay, lift,
last) by arbitrary functions

Makro Definition Fold

def fold[T,R](stream: Events[T], init: R,
f: (Events[R],Events[T]) => Events[R]) = result
where

{
def result: Events[R] = default(f(last(result, stream),
stream), init)

Usage of Fold

def y = fold(x, 0, (x: Events[Int], _: Events[Int]) => x+1)

Kallwies, Leucker, Schmitz, Thoma FM, October "19

Standard-Library

Defines a high number of macros to make the usage of TeSSLa comfortable

» Basic operations: Merge, Signal Lift, Const, Filter,

> Aggregation functions: Minimum, Maximum, Fold, Reduce,
Filter,

» Common datastrucutre functions: Set_contains,
Map_getOrElse,

» Application specific functions: Burst-Pattern recognition,
Event-Chain recognition,

Kallwies, Leucker, Schmitz, Thoma FM, October "19 21

Standard-Library

Burst Pattern

in x: Events[Int]

out bursts(x, burstLength = 2, waitingPeriod

burstAmount = 3) as b

1,

1O

® -0

Kallwies, Leucker, Schmitz, Thoma

FM, October 19

22

Meta Data/Annotations

Possibility to pass Event declaration to connected tools:

» @InstFunctionReturn ("func_name")

v

@InstFunctionCall ("func_name")

» @InstFunctionCallArg("func_name", par_pos)

P @LocalWrite (var_name)

» @GlobalRead (var_name)

» @ThreadId

Kallwies, Leucker, Schmitz, Thoma FM, October 19

23

Evaluation Approaches for TeSSLa

TeSSLa Language

Compiler Frontend

TeSSLa Core

Compiler

EPU Interpreter % Rust

Compiler

Synthesis

VM

0S
CPU

FPGA

24

Kallwies, Leucker, Schmitz, Thoma FM, October 19

TeSSLa Evaluation

in x: Events[Int]
def y = merge(last(y,x) + x, 0)
out y

Kallwies, Leucker, Schmitz, Thoma FM, October 19

25

TeSSLa Interpreter

in x: Events[Int]
def y = merge(last(y,x) + x, 0)
out y

Gat) Coonst)
E

y

Kallwies, Leucker, Schmitz, Thoma FM, October 19

25

TeSSLa Compiler

in x: Events[Int]
def y = merge(last(y,x) + x, 0)

out y

Input Reading

X,y

{1)®1®

<

. Y

A

<

Output generation

Memory

Kallwies, Leucker, Schmitz, Thoma

FM, October 19

25

FPGA Synthesis

in x: Events[Int]
def y = merge(last(y,x) + x, 0)
out y

Kallwies, Leucker, Schmitz, Thoma FM, October "19

25

EPU Configuration

in x: Events[Int]
def y = merge(last(y,x) + x, 0)
out y

Kallwies, Leucker, Schmitz, Thoma FM, October "19 25

