
Aggregate Update Problem for Multi-clocked
Dataflow Languages

Hannes Kallwies Martin Leucker Torben Scheffel Malte Schmitz
Daniel Thoma

Institute for Software Engineering and Programming Languages,
University of Lübeck, Lübeck, Germany

International Symposium on Code Generation and Optimization, April 2022



Dataflow Programming

Programming paradigm.

Basic concept: Data streams are combined with operators to generate
output streams.

Popular dataflow languages:
▶ Lustre
▶ Lucid Synchrone
▶ SIGNAL
▶ Esterell
▶ LabView
▶ LOLA
▶ Striver
▶ TeSSLa

1 4 7 8 3 5

9 6 2 1

input

output

f

time
1 2 3 4 5 6

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 2



Running Example

in i

last(m, i) = yℓ

lift(setAdd)(yℓ, i) = y

merge(y, ∅) = m

lift(contains)(yℓ, i) = s

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 3



Running Example

in i

last(m, i) = yℓ

lift(setAdd)(yℓ, i) = y

merge(y, ∅) = m ∅

lift(contains)(yℓ, i) = s

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 3



Running Example

in i 1

last(m, i) = yℓ

lift(setAdd)(yℓ, i) = y

merge(y, ∅) = m ∅

lift(contains)(yℓ, i) = s

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 3



Running Example

in i 1

last(m, i) = yℓ ∅

lift(setAdd)(yℓ, i) = y

merge(y, ∅) = m ∅

lift(contains)(yℓ, i) = s

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 3



Running Example

in i 1

last(m, i) = yℓ ∅

lift(setAdd)(yℓ, i) = y {1}

merge(y, ∅) = m ∅

lift(contains)(yℓ, i) = s

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 3



Running Example

in i 1

last(m, i) = yℓ ∅

lift(setAdd)(yℓ, i) = y {1}

merge(y, ∅) = m ∅ {1}

lift(contains)(yℓ, i) = s

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 3



Running Example

in i 1

last(m, i) = yℓ ∅

lift(setAdd)(yℓ, i) = y {1}

merge(y, ∅) = m ∅ {1}

lift(contains)(yℓ, i) = s ff

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 3



Running Example

in i 1 2

last(m, i) = yℓ ∅

lift(setAdd)(yℓ, i) = y {1}

merge(y, ∅) = m ∅ {1}

lift(contains)(yℓ, i) = s ff

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 3



Running Example

in i 1 2

last(m, i) = yℓ ∅ {1}

lift(setAdd)(yℓ, i) = y {1}

merge(y, ∅) = m ∅ {1}

lift(contains)(yℓ, i) = s ff

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 3



Running Example

in i 1 2

last(m, i) = yℓ ∅ {1}

lift(setAdd)(yℓ, i) = y {1} {1,2}

merge(y, ∅) = m ∅ {1} {1,2}

lift(contains)(yℓ, i) = s ff ff

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 3



Running Example

in i 1 2 1

last(m, i) = yℓ ∅ {1}

lift(setAdd)(yℓ, i) = y {1} {1,2}

merge(y, ∅) = m ∅ {1} {1,2}

lift(contains)(yℓ, i) = s ff ff

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 3



Running Example

in i 1 2 1

last(m, i) = yℓ ∅ {1} {1,2}

lift(setAdd)(yℓ, i) = y {1} {1,2}

merge(y, ∅) = m ∅ {1} {1,2}

lift(contains)(yℓ, i) = s ff ff

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 3



Running Example

in i 1 2 1

last(m, i) = yℓ ∅ {1} {1,2}

lift(setAdd)(yℓ, i) = y {1} {1,2} {1,2}

merge(y, ∅) = m ∅ {1} {1,2} {1,2}

lift(contains)(yℓ, i) = s ff ff tt

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 3



Running Example

in i 1 2 1

last(m, i) = yℓ ∅ {1} {1,2}

lift(setAdd)(yℓ, i) = y {1} {1,2} {1,2}

merge(y, ∅) = m ∅ {1} {1,2} {1,2}

lift(contains)(yℓ, i) = s ff ff tt

Evaluation of dataflow languages
follows a basic scheme:

▶ Construct dependency graph
▶ Find linear ordering of graph
▶ Continuously read inputs and calculate stream

values in the given order

∅

yℓ

y

s

m

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 3



Running Example

in i 1 2 1

last(m, i) = yℓ ∅ {1} {1,2}

lift(setAdd)(yℓ, i) = y {1} {1,2} {1,2}

merge(y, ∅) = m ∅ {1} {1,2} {1,2}

lift(contains)(yℓ, i) = s ff ff tt

Evaluation of dataflow languages
follows a basic scheme:
▶ Construct dependency graph

▶ Find linear ordering of graph
▶ Continuously read inputs and calculate stream

values in the given order

∅

yℓ

y

s

m

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 3



Running Example

in i 1 2 1

last(m, i) = yℓ ∅ {1} {1,2}

lift(setAdd)(yℓ, i) = y {1} {1,2} {1,2}

merge(y, ∅) = m ∅ {1} {1,2} {1,2}

lift(contains)(yℓ, i) = s ff ff tt

Evaluation of dataflow languages
follows a basic scheme:
▶ Construct dependency graph
▶ Find linear ordering of graph

▶ Continuously read inputs and calculate stream
values in the given order

∅

yℓ

y

s

m

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 3



Running Example

in i 1 2 1

last(m, i) = yℓ ∅ {1} {1,2}

lift(setAdd)(yℓ, i) = y {1} {1,2} {1,2}

merge(y, ∅) = m ∅ {1} {1,2} {1,2}

lift(contains)(yℓ, i) = s ff ff tt

Evaluation of dataflow languages
follows a basic scheme:
▶ Construct dependency graph
▶ Find linear ordering of graph
▶ Continuously read inputs and calculate stream

values in the given order

∅

yℓ

y

s

m

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 3



Aggregate Update Problem

in i 1 2 1

last(m, i) = yℓ ∅ {1} {1,2}

lift(setAdd)(yℓ, i) = y {1} {1,2} {1,2}

merge(y, ∅) = m ∅ {1} {1,2} {1,2}

lift(contains)(yℓ, i) = s ff ff tt

Dataflow languages have immutable semantics: After applying setAdd to
the events from stream yℓ these (old) events may still be accessed.

⇒ During evaluation every data structure must be copied before it is
modified.

But: In the concrete example the data structure fronm yℓ could be updated
in-place iff stream s is calculated before y.

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 4



Aggregate Update Problem

in i 1 2 1

last(m, i) = yℓ ∅ {1} {1,2}

lift(setAdd)(yℓ, i) = y {1} {1,2} {1,2}

merge(y, ∅) = m ∅ {1} {1,2} {1,2}

lift(contains)(yℓ, i) = s ff ff tt

Dataflow languages have immutable semantics: After applying setAdd to
the events from stream yℓ these (old) events may still be accessed.

⇒ During evaluation every data structure must be copied before it is
modified.

But: In the concrete example the data structure fronm yℓ could be updated
in-place iff stream s is calculated before y.

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 4



Aggregate Update Problem

in i 1 2 1

last(m, i) = yℓ ∅ {1} {1,2}

lift(setAdd)(yℓ, i) = y {1} {1,2} {1,2}

merge(y, ∅) = m ∅ {1} {1,2} {1,2}

lift(contains)(yℓ, i) = s ff ff tt

Dataflow languages have immutable semantics: After applying setAdd to
the events from stream yℓ these (old) events may still be accessed.

⇒ During evaluation every data structure must be copied before it is
modified.

But: In the concrete example the data structure fronm yℓ could be updated
in-place iff stream s is calculated before y.

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 4



Aggregate Update Problem

The problem of finding the maximum number of data structures in a
program that can be modified in-place is called Aggregate Update Problem.

▶ Well studied in the field of functional languages.
▶ The number of variables that can be modified in place is dependent on

the scheduling of the calculations.

Our approach:

1. Finding the optimal translation order, s.t. as many data structures as
possible can be modified in place.

2. Using mutable data structures for those that can be updated in place
and persistent data structures for the other ones.

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 5



Aggregate Update Problem

The problem of finding the maximum number of data structures in a
program that can be modified in-place is called Aggregate Update Problem.

▶ Well studied in the field of functional languages.
▶ The number of variables that can be modified in place is dependent on

the scheduling of the calculations.

Our approach:

1. Finding the optimal translation order, s.t. as many data structures as
possible can be modified in place.

2. Using mutable data structures for those that can be updated in place
and persistent data structures for the other ones.

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 5



Aggregate Update Problem

The problem of finding the maximum number of data structures in a
program that can be modified in-place is called Aggregate Update Problem.

▶ Well studied in the field of functional languages.
▶ The number of variables that can be modified in place is dependent on

the scheduling of the calculations.

Our approach:

1. Finding the optimal translation order, s.t. as many data structures as
possible can be modified in place.

2. Using mutable data structures for those that can be updated in place
and persistent data structures for the other ones.

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 5



The optimization algorithm for TeSSLa

1. Classification of the edges in the usage graph:
Read, Write, Pass, Last edges

Example

in i 1 2 1

last(m, i) = yℓ ∅ {1} {1,2}

lift(setAdd)(yℓ, i) = y {1} {1,2} {1,2}

merge(y, ∅) = m ∅ {1} {1,2} {1,2}

lift(contains)(yℓ, i) = s ff ff tt

∅

yℓ

y

s

m

P

L

W

R

P

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 6



The optimization algorithm for TeSSLa

2. Finding potentially aliasing variables

We call streams a and b potential aliases (a ≃ b), if we cannot prove them to
be aliasing safe.

Example:

in i 1 2 1

last(m, i) = yℓ ∅ {1} {1,2}

lift(setAdd)(yℓ, i) = y {1} {1,2} {1,2}

merge(y, ∅) = m ∅ {1} {1,2} {1,2}

lift(contains)(yℓ, i) = s ff ff tt

▶ yℓ ̸≃ m: yℓ and m cannot have the same event at the same time
▶ y ≃ m: y and m may have the same event at the same time

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 7



The optimization algorithm for TeSSLa

2. Finding potentially aliasing variables

We call streams a and b potential aliases (a ≃ b), if we cannot prove them to
be aliasing safe.

Example:

in i 1 2 1

last(m, i) = yℓ ∅ {1} {1,2}

lift(setAdd)(yℓ, i) = y {1} {1,2} {1,2}

merge(y, ∅) = m ∅ {1} {1,2} {1,2}

lift(contains)(yℓ, i) = s ff ff tt

▶ yℓ ̸≃ m: yℓ and m cannot have the same event at the same time
▶ y ≃ m: y and m may have the same event at the same time

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 7



The optimization algorithm for TeSSLa

2. Finding potentially aliasing variables

We call streams a and b potential aliases (a ≃ b), if we cannot prove them to
be aliasing safe.

Example:

in i 1 2 1

last(m, i) = yℓ ∅ {1} {1,2}

lift(setAdd)(yℓ, i) = y {1} {1,2} {1,2}

merge(y, ∅) = m ∅ {1} {1,2} {1,2}

lift(contains)(yℓ, i) = s ff ff tt

▶ yℓ ̸≃ m: yℓ and m cannot have the same event at the same time

▶ y ≃ m: y and m may have the same event at the same time

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 7



The optimization algorithm for TeSSLa

2. Finding potentially aliasing variables

We call streams a and b potential aliases (a ≃ b), if we cannot prove them to
be aliasing safe.

Example:

in i 1 2 1

last(m, i) = yℓ ∅ {1} {1,2}

lift(setAdd)(yℓ, i) = y {1} {1,2} {1,2}

merge(y, ∅) = m ∅ {1} {1,2} {1,2}

lift(contains)(yℓ, i) = s ff ff tt

▶ yℓ ̸≃ m: yℓ and m cannot have the same event at the same time
▶ y ≃ m: y and m may have the same event at the same time

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 7



The optimization algorithm for TeSSLa

3. Criteria for mutable variables

A stream s may be implemented with mutable data structures (s ∈ Mφ), if
none of the following patterns matches

s

∈ Mφ

s′

t t′

≃

̸=

W W + L

s

∈ Mφ

s′

t

t′

≃

<

W

R

s ∈ Mφ

t ̸∈ Mφ

P + W + L

1. double write/
reproduction

2. read
after write

3. inconsistent
mutability

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 8



The optimization algorithm for TeSSLa

3. Criteria for mutable variables

A stream s may be implemented with mutable data structures (s ∈ Mφ), if
none of the following patterns matches

s

∈ Mφ

s′

t t′

≃

̸=

W W + L

s

∈ Mφ

s′

t

t′

≃

<

W

R

s ∈ Mφ

t ̸∈ Mφ

P + W + L

1. double write/
reproduction

2. read
after write

3. inconsistent
mutability

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 8



The optimization algorithm for TeSSLa

4. Algorithm for determination of the maximum set of mutable variables

Example:
in i 1 2 1

last(m, i) = yℓ ∅ {1} {1,2}

lift(setAdd)(yℓ, i) = y {1} {1,2} {1,2}

merge(y, ∅) = m ∅ {1} {1,2} {1,2}

lift(contains)(yℓ, i) = s ff ff tt

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 9



The optimization algorithm for TeSSLa

4. Algorithm for determination of the maximum set of mutable variables
▶ Find variable families which can be all mutable or all persistent (rule 3).

Example:

in i 1 2 1

last(m, i) = yℓ ∅ {1} {1,2}

lift(setAdd)(yℓ, i) = y {1} {1,2} {1,2}

merge(y, ∅) = m ∅ {1} {1,2} {1,2}

lift(contains)(yℓ, i) = s ff ff tt

∅

yℓ

y

s

m

P

L

W

R

P

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 9



The optimization algorithm for TeSSLa

4. Algorithm for determination of the maximum set of mutable variables
▶ Find variable families which can be all mutable or all persistent (rule 3).

Example:

in i 1 2 1

last(m, i) = yℓ ∅ {1} {1,2}

lift(setAdd)(yℓ, i) = y {1} {1,2} {1,2}

merge(y, ∅) = m ∅ {1} {1,2} {1,2}

lift(contains)(yℓ, i) = s ff ff tt

∅

yℓ

y

s

m

P

L

W

R

P

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 9



The optimization algorithm for TeSSLa

4. Algorithm for determination of the maximum set of mutable variables
▶ Find variable families which can be all mutable or all persistent (rule 3).

Example:

in i 1 2 1

last(m, i) = yℓ ∅ {1} {1,2}

lift(setAdd)(yℓ, i) = y {1} {1,2} {1,2}

merge(y, ∅) = m ∅ {1} {1,2} {1,2}

lift(contains)(yℓ, i) = s ff ff tt

∅

yℓ

∅

y

s

m

P

L

W

R

P

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 9



The optimization algorithm for TeSSLa

4. Algorithm for determination of the maximum set of mutable variables
▶ Climb up from Write nodes and search for aliases.

Example:

in i 1 2 1

last(m, i) = yℓ ∅ {1} {1,2}

lift(setAdd)(yℓ, i) = y {1} {1,2} {1,2}

merge(y, ∅) = m ∅ {1} {1,2} {1,2}

lift(contains)(yℓ, i) = s ff ff tt

∅

yℓ

∅

y

s

m

P

L

W

R

P

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 9



The optimization algorithm for TeSSLa

4. Algorithm for determination of the maximum set of mutable variables
▶ Climb up from Write nodes and search for aliases.

Example:

in i 1 2 1

last(m, i) = yℓ ∅ {1} {1,2}

lift(setAdd)(yℓ, i) = y {1} {1,2} {1,2}

merge(y, ∅) = m ∅ {1} {1,2} {1,2}

lift(contains)(yℓ, i) = s ff ff tt

∅

yℓ

∅

y

s

m

P

L

W

R

P

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 9



The optimization algorithm for TeSSLa

4. Algorithm for determination of the maximum set of mutable variables
▶ Make variable family persistent if rule 1 (double write/replicate)

is breached.

Example:

in i 1 2 1

last(m, i) = yℓ ∅ {1} {1,2}

lift(setAdd)(yℓ, i) = y {1} {1,2} {1,2}

merge(y, ∅) = m ∅ {1} {1,2} {1,2}

lift(contains)(yℓ, i) = s ff ff tt

∅

yℓ

∅

y

s

m

P

L

W

R

P

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 9



The optimization algorithm for TeSSLa

4. Algorithm for determination of the maximum set of mutable variables
▶ Include edges for Read-Before-Write dependencies (rule 2)

in usage graph.

Example:

in i 1 2 1

last(m, i) = yℓ ∅ {1} {1,2}

lift(setAdd)(yℓ, i) = y {1} {1,2} {1,2}

merge(y, ∅) = m ∅ {1} {1,2} {1,2}

lift(contains)(yℓ, i) = s ff ff tt

∅

yℓ

∅

y

s

m

P

L

W

R

P

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 9



The optimization algorithm for TeSSLa

4. Algorithm for determination of the maximum set of mutable variables
▶ Include edges for Read-Before-Write dependencies (rule 2)

in usage graph.

Example:

in i 1 2 1

last(m, i) = yℓ ∅ {1} {1,2}

lift(setAdd)(yℓ, i) = y {1} {1,2} {1,2}

merge(y, ∅) = m ∅ {1} {1,2} {1,2}

lift(contains)(yℓ, i) = s ff ff tt

∅

yℓ

∅

y

s

m

P

L

W

R

P

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 9



The optimization algorithm for TeSSLa

4. Algorithm for determination of the maximum set of mutable variables
▶ Find optimal translation order of usage graph (NP-complete).

Example:

in i 1 2 1

last(m, i) = yℓ ∅ {1} {1,2}

lift(setAdd)(yℓ, i) = y {1} {1,2} {1,2}

merge(y, ∅) = m ∅ {1} {1,2} {1,2}

lift(contains)(yℓ, i) = s ff ff tt

∅

yℓ

∅

y

s

m

P

L

W

R

P

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 9



The optimization algorithm for TeSSLa

4. Algorithm for determination of the maximum set of mutable variables
▶ Find optimal translation order of usage graph (NP-complete).

Example:

in i 1 2 1

last(m, i) = yℓ ∅ {1} {1,2}

lift(setAdd)(yℓ, i) = y {1} {1,2} {1,2}

merge(y, ∅) = m ∅ {1} {1,2} {1,2}

lift(contains)(yℓ, i) = s ff ff tt

∅

yℓ

s

y

m

PW

R

P

L

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 9



Evaluation of the approach: Synthetic examples

2.09

Seen Set

3.90

4.97

1.82

Map Window

3.08
3.33

1.48

Queue

1.53
1.78sp

ee
du

p

small (10 elem.)
medium (200 elem.)

large (10k elem.)

Speedups compared to the non-optimized (fully persistent) implementation
(109 input events).

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 10



Evaluation of the approach: Real-World examples

Specification Optimized Non-optimized Speedup
DBTimeCons. 171 s 216 s 1.3
DBAccessCons.(full) 233 s > 1 h > 15.5
DBAccessCons.(33 %) 59.2 s 127 s 2.1
PeakDetection 7.56 s 14.0 s 1.9
SpectrumCalc. 1.04 s 2.07 s 2.0

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 11



Conclusion

▶ Dataflow languages can be evaluated by iteratively calculating stream
events in the correct order.

▶ The Aggregate Update Problem deals with the question which
data-structures can be updated in place.

▶ We presented a solution for finding the perfect ordering to maximize in
place updates.

▶ The evaluation showed significant speedups.

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 12



Contact information

Contact: kallwies@isp.uni-luebeck.de

This presentation and recording belong to the authors. No distribution is
allowed without the authors’ permission.

Kallwies, Leucker, Scheffel, Schmitz, Thoma CGO, April ’22 13


